Roots and the delivery of solutes to the xylem

The structural features of the pathways followed by solutes and water are described. The porous nature of the cell walls comprising the apoplasm is described and the difficulties in verifying the passage of water through different parts of the apoplasm are discussed. The endoderm is of ubiquitous occurrence and has two invariant characteristics, a girdle-like wall thickening, the Casparian band, and the attachment of the plasma membrane to the band. Suggestions are made concerning the constraints placed on the passage of materials in the stele by these structures. The hypodermis is also a very common structure which shares a number of properties seen in the endodermis. The implications of an apoplasmic barrier in the hypodermis are discussed. The plasmodesmata are the key structural feature of the symplasmic pathway and recent information makes it clear that the size of the pores in the neck region can vary with the physiological state and position of tissues. The symplasmic pathway seems not to be interrupted by structural developments which make the endodermis an apoplasmic barrier of high resistance. Recent information from transpiring plants indicates that the turgor pressure in cortical cells increases centripetally: there is, therefore an outwardly directed hydrostatic pressure gradient. The implications of these new findings for water and solute flows in the symplast are considered. The final step in the radial transfer of materials is their release into the xylem. There is evidence that stelar tissues contain an H + -translocating ATPase whose activity can be influenced by physiological factors. It is pointed out that there may be major changes in the concentration of K + in xylem sap during a day-night cycle which may influence the polarization of the cell membranes of xylem parenchyma and the opening of ion-channels. The xylem elements themselves are not always fully conductive, even when their final diameter has been reached. The protoplasts and cross walls may be more persistent than is usually assumed, especially in soil-grown roots. Because of the low activity of Ca 2+ in the cytoplasm and the discontinuity of compartments within cells which contain abundant free Ca 2+ , this ion probably moves radially primarily by diffusion in the apoplasm. The transfer of Ca +2 across the endodermis is shown to depend on the activity of Ca 2+ ATPase in the plasma membrane of the stelar side of the endodermis, emphasising once again the epithelial nature of this cell layer.

1962 ◽  
Vol 14 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Toshio Nagano

The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Olivia Muriel ◽  
Laetitia Michon ◽  
Wanda Kukulski ◽  
Sophie G. Martin

Cell–cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h− isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h− cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h− cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h− cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell–cell fusion.


1965 ◽  
Vol 43 (11) ◽  
pp. 1401-1407 ◽  
Author(s):  
James Cronshaw

Cambial derivatives of Acer rubrum have been examined at stages of their differentiation following fixation in 3% or 6% glutaraldehyde with a post fixation in osmium tetroxide. At early stages of development numerous free ribosomes are present in the cytoplasm, and elements of the endoplasmic reticulum tend to align themselves parallel to the cell surfaces. The plasma membrane is closely applied to the cell walls. During differentiation a complex system of cytoplasmic microtubules develops in the peripheral cytoplasm. These microtubules are oriented, mirroring the orientation of the most recently deposited microfibrils of the cell wall. The microtubules form a steep helix in the peripheral cytoplasm at the time of deposition of the middle layer of the secondary wall. During differentiation the free ribosomes disappear from the cytoplasm and numerous elements of rough endoplasmic reticulum with associated polyribosomes become more evident. In many cases the endoplasmic reticulum is associated with the cell surface. During the later stages of differentiation there are numerous inclusions between the cell wall and the plasma membrane.


2005 ◽  
Vol 33 (5) ◽  
pp. 1008-1011 ◽  
Author(s):  
H. Venter ◽  
S. Shahi ◽  
L. Balakrishnan ◽  
S. Velamakanni ◽  
A. Bapna ◽  
...  

The movement of drugs across biological membranes is mediated by two major classes of membrane transporters. Primary-active, ABC (ATP-binding cassette) multidrug transporters are dependent on ATP-binding/hydrolysis, whereas secondary-active multidrug transporters are coupled to the proton (or sodium)-motive force that exists across the plasma membrane. Recent work on LmrA, an ABC multidrug transporter in Lactococcus lactis, suggests that primary- and secondary-active multidrug transporters share functional and structural features. Some of these similarities and their implications for the mechanism of transport by ABC multidrug transporters will be discussed.


1995 ◽  
Vol 312 (2) ◽  
pp. 479-484 ◽  
Author(s):  
E A C Wiemer ◽  
P A M Michels ◽  
F R Opperdoes

The pyruvate produced by glycolysis in the bloodstream form of the trypanosome is excreted into the host bloodstream by a facilitated diffusion carrier. The sensitivity of pyruvate transport for alpha-cyano-4-hydroxycinnamate and the compound UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate], which are known to be selective inhibitors of pyruvate (monocarboxylate) transporters present in mitochondria and the plasma membrane of eukaryotic cells, was examined. The trypanosomal pyruvate carrier was found to be rather insensitive to inhibition by alpha-cyano-4-hydroxycinnamate (Ki = 17 mM) but could be completely blocked by UK5099 (Ki = 49 microM). Inhibition of pyruvate transport resulted in the retention, and concomitant accumulation, of pyruvate within the trypanosomes, causing acidification of the cytosol and osmotic destabilization of the cells. Our results indicate that this physiological state has serious metabolic consequences and ultimately leads to cell death; thereby identifying the pyruvate carrier as a possible target for chemotherapeutic intervention.


2017 ◽  
Vol 81 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Cristian Biagioni ◽  
Yves Moëlo

AbstractBoscardinite, ideally TlPb4(Sb7As2)∑9S18, has been described recently as a new homeotypic derivative of baumhauerite, found at Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. New findings of boscardinite in different mineral associations of this deposit have allowed the collection of new crystal-chemical data. Electron-microprobe analysis of the crystal used for the single-crystal X-ray diffraction study gave (in wt.%): Ag 1.81(5), Tl 12.60(21), Pb 17.99(12), Hg 0.14(5), As 9.36(12), Sb 33.60(27), S 23.41(30),Cl 0.06(1), total 98.97(100). On the basis of ∑Me= 14 apfu, it corresponds to Ag0.42Tl1.52Pb2.14Hg0.02(Sb6.82As3.08)∑9.90S18.04Cl0.04. With respect to the type specimen, these new findings are characterized by a strong Pb depletion, coupled with higher Tl contents, and a significant As enrichment. The single-crystal X-ray diffraction study of this (Tl,As)-enriched boscardinite confirms the structural features described for the type sample. The unit-cell parameters area= 8.1017(4),b= 8.6597(4),c= 22.5574(10) Å, α = 90.666(2), β = 97.242(2), γ = 90.850(2)°,V= 1569.63(12) Å3, space groupP̄1. The crystal structure was refined down toR1= 0.0285 on the basis of 6582 reflections withFo> 4σ(Fo). Arsenic is dominant in threeMeS3sites, compared to one in type boscardinite. The main As-enrichment is observed in the sartorite-type sub-layer. Owing to this chemical peculiarity, (Tl, As)-rich boscardinite shows alternation, alongb, of Sb-rich sites and As-rich sites; this feature represents the main factor controlling the 8 Å superstructure. The chemical variability of boscardinite is discussed; the Ag increase observed here gets closer to stoichiometric AgTl3Pb4(Sb14As6)∑20S36(Z= 1), against possible extension up to AgTl2Pb6(Sb15As4)∑19S36for type boscardinite.


1968 ◽  
Vol 38 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Sanford L. Palay ◽  
Constantino Sotelo ◽  
Alan Peters ◽  
Paula M. Orkand

Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial segment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial segment is characterized by three special features: (a) a dense layer of finely granular material undercoating the plasma membrane, (b) scattered clusters of ribosomes, and (c) fascicles of microtubules. A similar undercoating occurs beneath the plasma membrane of myelinated axons at nodes of Ranvier. The ribosomes are not organized into Nissl bodies and are too sparsely distributed to produce basophilia. They vanish at the end of the initial segment. Fascicles of microtubules occur only in the axon hillock and initial segment and nowhere else in the neuron. Therefore, they are the principal identifying mark. Some speculations are presented on the relation between these special structural features and the special function of the initial segment.


2007 ◽  
Vol 282 (38) ◽  
pp. 28117-28125 ◽  
Author(s):  
Philip P. Chamberlain ◽  
Xun Qian ◽  
Amanda R. Stiles ◽  
Jaiesoon Cho ◽  
David H. Jones ◽  
...  

Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.


2019 ◽  
Author(s):  
Samantha J. McDonnell ◽  
David G. Spiller ◽  
Michael R. H. White ◽  
Ian A. Prior ◽  
Luminita Paraoan

AbstractSpecific molecular interactions that underpin the switch between ER stress-triggered autophagy-mediated cellular repair and cellular death by apoptosis are not characterized. This study reports the unexpected interaction elicited by ER stress between the plasma membrane (PM)-localized apoptosis effector PERP and the ER Ca2+ pump SERCA2b. We show that the p53 effector PERP, which specifically induces apoptosis when expressed above a threshold level, has a heterogeneous distribution across the PM of un-stressed cells and is actively turned over by the lysosome. PERP is upregulated following sustained starvation-induced autophagy, which precedes the onset of apoptosis indicating that PERP protein levels are controlled by a lysosomal pathway that is sensitive to cellular physiological state. Furthermore, ER stress stabilizes PERP at the PM and induces its increasing co-localization with SERCA2b at ER-PM junctions. The findings highlight a novel crosstalk between pro-survival autophagy and pro-death apoptosis pathways and identify, for the first time, accumulation of an apoptosis effector to ER-PM junctions in response to ER stress.


Sign in / Sign up

Export Citation Format

Share Document