scholarly journals Emerging infectious pathogens of wildlife

2001 ◽  
Vol 356 (1411) ◽  
pp. 1001-1012 ◽  
Author(s):  
A. Dobson ◽  
J. Foufopoulos

The first part of this paper surveys emerging pathogens of wildlife recorded on the ProMED Web site for a 2–year period between 1998 and 2000. The majority of pathogens recorded as causing disease outbreaks in wildlife were viral in origin. Anthropogenic activities caused the outbreaks in a significant majority of cases. The second part of the paper develops some matrix models for quantifying the basic reproductive number, R 0 , for a variety of potential types of emergent pathogen that cause outbreaks in wildlife. These analyses emphasize the sensitivity of R 0 to heterogeneities created by either the spatial structure of the host population, or the ability of the pathogens to utilize multiple host species. At each stage we illustrate how the approach provides insight into the initial dynamics of emergent pathogens such as canine parvovirus, Lyme disease, and West Nile virus in the United States.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58–1.39) or face masks (median Reff 0.97, 95% CI 0.58–1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd6370 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.


2007 ◽  
Vol 4 (15) ◽  
pp. 755-762 ◽  
Author(s):  
Justin Lessler ◽  
Derek A.T Cummings ◽  
Steven Fishman ◽  
Amit Vora ◽  
Donald S Burke

Abstarct The 1976 outbreak of A/New Jersey/76 influenza in Fort Dix is a rare example of an influenza virus with documented human to human transmission that failed to spread widely. Despite extensive epidemiological investigation, no attempt has been made to quantify the transmissibility of this virus. The World Health Organization and the United States Government view containment of emerging influenza strains as central to combating pandemic influenza. Computational models predict that it may be possible to contain an emergent pandemic influenza if virus transmissibility is low. The A/New Jersey/76 outbreak at the United States Army Training Center at Fort Dix, New Jersey in January 1976 caused 13 hospitalizations, 1 death and an estimated 230 cases. To characterize viral transmission in this epidemic, we estimated the basic reproductive number and serial interval using deterministic epidemic models and stochastic simulations. We estimated the basic reproductive number for this outbreak to be 1.2 (supported interval 1.1–1.4), the serial interval to be 1.9 days (supported interval 1.6–3.8 days), and that the virus had at least six serial human to human transmissions. This places the transmissibility of A/New Jersey/76 virus at the lower end of circulating flu strains, well below the threshold for control.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249271
Author(s):  
Karla Therese L. Sy ◽  
Laura F. White ◽  
Brooke E. Nichols

The basic reproductive number (R0) is a function of contact rates among individuals, transmission probability, and duration of infectiousness. We sought to determine the association between population density and R0 of SARS-CoV-2 across U.S. counties. We conducted a cross-sectional analysis using linear mixed models with random intercept and fixed slopes to assess the association of population density and R0, and controlled for state-level effects using random intercepts. We also assessed whether the association was differential across county-level main mode of transportation percentage as a proxy for transportation accessibility, and adjusted for median household income. The median R0 among the United States counties was 1.66 (IQR: 1.35–2.11). A population density threshold of 22 people/km2 was needed to sustain an outbreak. Counties with greater population density have greater rates of transmission of SARS-CoV-2, likely due to increased contact rates in areas with greater density. An increase in one unit of log population density increased R0 by 0.16 (95% CI: 0.13 to 0.19). This association remained when adjusted for main mode of transportation and household income. The effect of population density on R0 was not modified by transportation mode. Our findings suggest that dense areas increase contact rates necessary for disease transmission. SARS-CoV-2 R0 estimates need to consider this geographic variability for proper planning and resource allocation, particularly as epidemics newly emerge and old outbreaks resurge.


Author(s):  
Ruian Ke ◽  
Ethan Obie Romero-Severson ◽  
Steven Sanche ◽  
Nick Hengartner

SARS-CoV-2 rapidly spread from a regional outbreak to a global pandemic in just a few months. Global research efforts have focused on developing effective vaccines against SARS-CoV-2 and the disease it causes, COVID-19. However, some of the basic epidemiological parameters, such as the exponential epidemic growth rate and the basic reproductive number, R0, across geographic areas are still not well quantified. Here, we developed and fit a mathematical model to case and death count data collected from the United States and eight European countries during the early epidemic period before broad control measures were implemented. Results show that the early epidemic grew exponentially at rates between 0.19-0.29/day (epidemic doubling times between 2.4-3.6 days). We discuss the current estimates of the mean serial interval, and argue that existing evidence suggests that the interval is between 6-8 days in the absence of active isolation efforts. Using parameters consistent with this range, we estimated the median R0 value to be 5.8 (confidence interval: 4.7-7.3) in the United States and between 3.6 and 6.1 in the eight European countries. This translates to herd immunity thresholds needed to stop transmission to be between 73% and 84%. We further analyze how vaccination schedules depends on R0, the duration of vaccine-induced immunity to SARS-CoV-2, and show that individual-level heterogeneity in vaccine induced immunity can significantly affect vaccination schedules.


2021 ◽  
Author(s):  
Brian M. Gurbaxani ◽  
Andrew N. Hill ◽  
Prabasaj Paul ◽  
Pragati V. Prasad ◽  
Rachel B. Slayton

Abstract We updated a published mathematical model of SARS-CoV-2 transmission with laboratory-derived source and wearer protection efficacy estimates for a variety of face masks to estimate their impact on COVID-19 incidence and related mortality in the United States. When used at 25 already-observed population rates of 80% for those ≥65 years and 60% for those <65 years, face masks are associated with 69% (cloth) to 78% (medical procedure mask) reductions in cumulative COVID-19 infections and 82% (cloth) to 87% (medical procedure mask) reductions in related deaths over a 6-month timeline in the model, assuming a basic reproductive number of 2.5. If cloth or medical procedure masks’ source control and wearer protection efficacies are boosted about 30% each to 84% and 60% by cloth over medical procedure masking, fitters, or braces, the COVID-19 basic reproductive number of 2.5 could be reduced to an effective reproductive number ≤ 1.0, and from 6.0 to 2.3 for a variant of concern similar to delta (B.1.617.2).


2020 ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with an Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58-1.39)* or face masks (median Reff 0.97, 95% CI 0.58-1.39)*. While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Author(s):  
Virginia E. Pitzer ◽  
Melanie Chitwood ◽  
Joshua Havumaki ◽  
Nicolas A. Menzies ◽  
Stephanie Perniciaro ◽  
...  

AbstractEstimates of the reproductive number for novel pathogens such as SARS-CoV-2 are essential for understanding the potential trajectory of the epidemic and the level of intervention that is needed to bring the epidemic under control. However, most methods for estimating the basic reproductive number (R0) and time-varying effective reproductive number (Rt) assume that the fraction of cases detected and reported is constant through time. We explore the impact of secular changes in diagnostic testing and reporting on estimates of R0 and Rt using simulated data. We then compare these patterns to data on reported cases of COVID-19 and testing practices from different United States (US) states. We find that changes in testing practices and delays in reporting can result in biased estimates of R0 and Rt. Examination of changes in the daily number of tests conducted and the percent of patients testing positive may be helpful for identifying the potential direction of bias. Changes in diagnostic testing and reporting processes should be monitored and taken into consideration when interpreting estimates of the reproductive number of COVID-19.


2020 ◽  
Vol 17 (172) ◽  
pp. 20200393 ◽  
Author(s):  
Laurent Hébert-Dufresne ◽  
Benjamin M. Althouse ◽  
Samuel V. Scarpino ◽  
Antoine Allard

The basic reproductive number, R 0 , is one of the most common and most commonly misapplied numbers in public health. Often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that different epidemics can exhibit, even when they have the same R 0 . Here, we reformulate and extend a classic result from random network theory to forecast the size of an epidemic using estimates of the distribution of secondary infections, leveraging both its average R 0 and the underlying heterogeneity. Importantly, epidemics with lower R 0 can be larger if they spread more homogeneously (and are therefore more robust to stochastic fluctuations). We illustrate the potential of this approach using different real epidemics with known estimates for R 0 , heterogeneity and epidemic size in the absence of significant intervention. Further, we discuss the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19 the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R 0 .


Author(s):  
Laurent Hébert-Dufresne ◽  
Benjamin M. Althouse ◽  
Samuel V. Scarpino ◽  
Antoine Allard

The basic reproductive number — R0 — is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same R0 [1–3]. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory [4] that relies on contact tracing data to simultaneously determine the first moment (R0) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0 when predicting epidemic size.


Sign in / Sign up

Export Citation Format

Share Document