scholarly journals Novel communities from climate change

2012 ◽  
Vol 367 (1605) ◽  
pp. 2913-2922 ◽  
Author(s):  
Miguel Lurgi ◽  
Bernat C. López ◽  
José M. Montoya

Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


2020 ◽  
Vol 117 (37) ◽  
pp. 22858-22865 ◽  
Author(s):  
Vigdis Vandvik ◽  
Olav Skarpaas ◽  
Kari Klanderud ◽  
Richard J. Telford ◽  
Aud H. Halbritter ◽  
...  

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant−plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


2011 ◽  
Vol 68 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
C. H. Ainsworth ◽  
J. F. Samhouri ◽  
D. S. Busch ◽  
W. W. L. Cheung ◽  
J. Dunne ◽  
...  

Abstract Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne, J., and Okey, T. A. 2011. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. – ICES Journal of Marine Science, 68: 1217–1229. Although there has been considerable research on the impacts of individual changes in water temperature, carbonate chemistry, and other variables on species, cumulative impacts of these effects have rarely been studied. Here, we simulate changes in (i) primary productivity, (ii) species range shifts, (iii) zooplankton community size structure, (iv) ocean acidification, and (v) ocean deoxygenation both individually and together using five Ecopath with Ecosim models of the northeast Pacific Ocean. We used a standardized method to represent climate effects that relied on time-series forcing functions: annual multipliers of species productivity. We focused on changes in fisheries landings, biomass, and ecosystem characteristics (diversity and trophic indices). Fisheries landings generally declined in response to cumulative effects and often to a greater degree than would have been predicted based on individual climate effects, indicating possible synergies. Total biomass of fished and unfished functional groups displayed a decline, though unfished groups were affected less negatively. Some functional groups (e.g. pelagic and demersal invertebrates) were predicted to respond favourably under cumulative effects in some regions. The challenge of predicting climate change impacts must be met if we are to adapt and manage rapidly changing marine ecosystems in the 21st century.


Author(s):  
Bruce Woodward ◽  
Sandra Mitchell

We visited Grand Teton National Park in May, June and July 1991 to begin research on species interactions in shallow montane ponds. Our primary interests were in how body size variation influences species interactions, and how temperature influences body size and thus species interactions. Our goal in the first year was to explore the extant variation in temperature regimes and body sizes of potentially interacting species, and examine some of these species interactions.


2012 ◽  
Vol 367 (1605) ◽  
pp. 3050-3057 ◽  
Author(s):  
Miguel Lurgi ◽  
Bernat C. López ◽  
José M. Montoya

The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community—in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space.


2018 ◽  
Vol 19 (4) ◽  
pp. 613-621 ◽  
Author(s):  
Ana M Queirós ◽  
José Fernandes ◽  
Lily Genevier ◽  
Christopher P Lynam

2015 ◽  
Author(s):  
Ignasi Bartomeus ◽  
Dominique Gravel ◽  
Jason Tylianakis ◽  
Marcelo Aizen ◽  
Ian Dickie ◽  
...  

Species interactions, ranging from antagonisms to mutualisms, form the architecture of biodiversity and determine ecosystem functioning. Understanding the rules responsible for who interacts with whom, as well as the functional consequences of these interspecific interactions, is central to predicting community dynamics and stability. Species traitssensu latomay affect different ecological processes determining species interactions through a two-step process. First, ecological and life-history traits govern species distributions and abundance, and hence determine species co-occurrence, which is a prerequisite for them to interact. Second, morphological traits between co-occurring potential interaction partners should match for the realization of an interaction. Moreover, inferring functioning from a network of interactions may require the incorporation of interaction efficiency. This efficiency may be also trait-mediated, and can depend on the extent of matching, or on morphological, physiological or behavioural traits. It has been shown that both neutral and trait-based models can predict the general structure of networks, but they rarely accurately predict individual interactions, suggesting that these models may be predicting the right structure for the wrong reason. We propose to move away from testing null models with a framework that explicitly models the probability of interaction among individuals given their traits. The proposed models integrate both neutral and trait-matching constraints while using only information about known interactions, thereby overcoming problems originating from under-sampling of rare interactions (i.e. missing links). They can easily accommodate qualitative or quantitative data, and can incorporate trait variation within species, such as values that vary along developmental stages or environmental gradients. We use three case studies to show that they can detect strong trait matching (e.g. predator-prey system), relaxed trait matching (e.g. herbivore-plant system) and barrier trait matching (e.g. plant-pollinator systems). Only by elucidating which species traits are important in each process, i.e. in determining interaction establishment, frequency, and efficiency, can we advance in explaining how species interact and the consequences for ecosystem functioning.


2020 ◽  
Author(s):  
Anna M. O’Brien ◽  
Tiago F. Lins ◽  
Yamin Yang ◽  
Megan E. Frederickson ◽  
David Sinton ◽  
...  

AbstractAnthropogenic stressors, such as climate change or chemical pollution, affect individual species and alter species interactions. Moreover, species interactions can modify effects of anthropogenic stressors on interacting species - a process which may vary amongst stressors or stressor combinations. Most ecotoxicological work focuses on single stressors on single species. Here, we test hypotheses about multiple stressors (climate change and tire wear particles) and interacting species, and whether species interactions modify responses. We use duckweed and its microbiome to model responses of plant-microbe interactions. Climate change is occurring globally, and with increasing urbanization, tire wear particles increasingly contaminate road runoff. Their leachate is associated with zinc, PAHs, plastic additives, and other toxic compounds. We crossed perpendicular gradients of temperature and CO2 in a well plate with factorial manipulation of leachate from tire wear particles and presence of duckweed microbiomes. We measured duckweed and microbial growth, duckweed greenness, and plant-microbe growth correlations. We found that tire leachate and warmer temperatures enhanced duckweed and microbial growth, but microbes diminished positive responses in duck-weed, meaning microbiomes became costly for duckweed. These costs of microbiomes were less-than-additive with warming and leachate, and might be caused by leachate-disrupted endocrine signaling in duckweed. We observed reduced greenness at higher CO2 without tire leachate, suggesting a relative increase in plant nutrient demand, and possibly underlying positive plant-microbe growth correlations in these conditions, as microbes presumably increase nutrient availability. However, with tire leachate, growth correlations were never positive, and shifted negative at lower CO2, further suggesting leachate favors mutualism disruption. In summary, while individual stressors of global change can affect individual species, in ecology we know species interact; and in ecotoxicology, we know stressors interact. Our results demonstrate this complexity: multiple stressors can affect species interactions, and species interactions can alter effects of multiple stressors.


2020 ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which integrates evolution, dispersal, and species interactions within and between trophic levels. This allows us to analyze how these processes interact to shape species- and community-level dynamics under climate change. Additionally, we incorporate the heretofore unexplored feature that species interactions themselves might change due to increasing temperatures and affect the impact of climate change on ecological communities. The new modeling framework captures previously reported ecological responses to climate change, and also reveals two new key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on global biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, using a trait-based perspective, we found a strong negative relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Communities resulting from different ecological interaction structures form distinct clusters along this relationship, but varying species’ abilities to disperse and adapt to new temperatures leave it unaffected.


Sign in / Sign up

Export Citation Format

Share Document