scholarly journals Climate change impacts on body size and food web structure on mountain ecosystems

2012 ◽  
Vol 367 (1605) ◽  
pp. 3050-3057 ◽  
Author(s):  
Miguel Lurgi ◽  
Bernat C. López ◽  
José M. Montoya

The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community—in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space.

2012 ◽  
Vol 367 (1605) ◽  
pp. 2990-2997 ◽  
Author(s):  
Guy Woodward ◽  
Lee E. Brown ◽  
Francois K. Edwards ◽  
Lawrence N. Hudson ◽  
Alexander M. Milner ◽  
...  

Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 605
Author(s):  
Alba Piña-Rey ◽  
Estefanía González-Fernández ◽  
María Fernández-González ◽  
Mª. Nieves Lorenzo ◽  
Fco. Javier Rodríguez-Rajo

Viticultural climatic indices were assessed for the evaluation of the meteorological variations in the requirements of wine cultivars. The applied bioclimatic indices have been widely used to provide an initial evaluation of climate change impacts on grapevine and to delineate wine regions and suitable areas for planting around the world. The study was carried out over a period of 16 years (from 2000 to 2015) in five Designation of Origin areas in Northwestern Spain located in the Eurosiberian region, the transition zone between the Eurosiberian and the Mediterranean areas, and in the Mediterranean area. In addition, the high-resolution meteorological dataset “Spain02” was applied to the bioclimatic indices for the period 1950–2095. To further assess the performance of “Spain02”, Taylor diagrams were elaborated for the different bioclimatic indices. A significant trend to an increase of the Winkler, Huglin, Night Cold Index and GSS Indices was detected in the North-western Spain, whereas slight negative trends for BBLI and GSP Indices were observed. To analyze future projections 2061–2095, data from the high-resolution dynamically downscaled daily climate simulations from EURO-CORDEX project were used. To further assess the performance of Spain02, Taylor diagrams were elaborated for the different bioclimatic indices. A trend to an increase of the Winkler, Huglin, Night Cold Index and GSP Indices was detected in Northwestern Spain, whereas slight negative trends for BBLI and GSP Indices were observed. Our results showed that climatic conditions in the study region could variate for the crop in the future, more for Mediterranean than Eurosiberian bioclimatic area. Due to an advance in the phenological events or the vintage data, more alcohol-fortified wines and variations in the acidity level of wines could be expected in Northwestern Spain, these processes being most noticeable in the Mediterranean area. The projections for the BBLI and GSP Indices will induce a decrease in the pressure of the mildew attacks incidence in the areas located at the Eurosiberian region and the nearest transition zones. Projections showed if the trend of temperature increase continues, some cultural practice variations should be conducted in order to preserve the grape cultivation suitability in the studied area.


2011 ◽  
Vol 68 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
C. H. Ainsworth ◽  
J. F. Samhouri ◽  
D. S. Busch ◽  
W. W. L. Cheung ◽  
J. Dunne ◽  
...  

Abstract Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne, J., and Okey, T. A. 2011. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. – ICES Journal of Marine Science, 68: 1217–1229. Although there has been considerable research on the impacts of individual changes in water temperature, carbonate chemistry, and other variables on species, cumulative impacts of these effects have rarely been studied. Here, we simulate changes in (i) primary productivity, (ii) species range shifts, (iii) zooplankton community size structure, (iv) ocean acidification, and (v) ocean deoxygenation both individually and together using five Ecopath with Ecosim models of the northeast Pacific Ocean. We used a standardized method to represent climate effects that relied on time-series forcing functions: annual multipliers of species productivity. We focused on changes in fisheries landings, biomass, and ecosystem characteristics (diversity and trophic indices). Fisheries landings generally declined in response to cumulative effects and often to a greater degree than would have been predicted based on individual climate effects, indicating possible synergies. Total biomass of fished and unfished functional groups displayed a decline, though unfished groups were affected less negatively. Some functional groups (e.g. pelagic and demersal invertebrates) were predicted to respond favourably under cumulative effects in some regions. The challenge of predicting climate change impacts must be met if we are to adapt and manage rapidly changing marine ecosystems in the 21st century.


Author(s):  
K. Nivedita Priyadarshini ◽  
S. A. Rahaman ◽  
S. Nithesh Nirmal ◽  
R. Jegankumar ◽  
P. Masilamani

<p><strong>Abstract.</strong> Climate change impacts on watershed ecosystems and hydrologic processes are complex. The key significant parameters responsible for balancing the watershed ecosystems are temperature and rainfall. Though these parameters are uncertain, they play a prime role in the projections of dimensional climate change studies. The impact of climate change is more dependent on temperature and precipitation which contributes at a larger magnitude for characterising global warming issues. This paper aims to forecast the variations of temperature and precipitation during the period of 2020&amp;ndash;2050 for the northern part of Thenpennar sub basin. This study is modelled using SWAT (Soil and Water Assessment Tool) &amp;ndash; a scale model developed to predict the impact of changes that occurs in land, soil and water over a period of time. This study is validated using the base period from 1980&amp;ndash;2000 which shows the distribution of rainfall and temperature among 38 watersheds. The results from this study show that there is a decrease in the rainfall for a maximum of about 20% in the month of December during the predicted period of 2020 and 2050. This study assesses the possible adverse impact of climate change on temperature and precipitation of Thenpennai sub-basin. This kind of predictions will help the government agencies, rulers and decision makers in policy making and implementing the adaptation strategies for the changing climatic conditions.</p>


2018 ◽  
Author(s):  
Gustavo Yunda-Guarin ◽  
Philippe Archambault ◽  
Guillaume Massé ◽  
Christian Nozais

In polar areas, the pelagic-benthic coupling plays a fundamental role in ensuring organic matter flow across depths and trophic levels. Climate change impacts the Arctic’s physical environment and ecosystem functioning, affecting the sequestration of carbon, the structure and efficiency of the benthic food web and its resilience.In the Arctic Ocean, highest atmospheric warming tendencies (by ~0.5°C) occur in the east of Baffin Bay making this area an ideal site to study the effects of climate change on benthic communities. We sampled epibenthic organisms at 13 stations bordering the sea ice between June and July 2016. The epibenthic taxonomic composition was identified and grouped by feeding guilds. Isotopic signatures (δ13C - δ15N), trophic levels and trophic separation and redundancy were measured and quantified at each station. In the light of the results obtained, the stability of the benthic community in the Baffin Bay at the sea ice edge is discussed.


2018 ◽  
Vol 76 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Michael R Landry ◽  
Lynnath E Beckley ◽  
Barbara A Muhling

Abstract Compared with high-latitude seas, the ecological implications of climate change for top consumers in subtropical regions are poorly understood. One critical area of knowledge deficiency is the nature of food-web connections to larvae during their vulnerable time in the plankton. Bluefin tuna (BFT) are highly migratory temperate species whose early life stages are spent in ultra-oligotrophic subtropical waters. Dietary studies of BFT larvae provide evidence of prey-limited growth coupled with strong selection for specific prey types—cladocerans and poecilostomatoid copepods—whose paradoxical or poorly resolved trophic characteristics do not fit the conventional understanding of open-ocean food-web structure and flows. Current knowledge consequently leaves many uncertainties in climate change effects, including the possibility that increased nitrogen fixation by Trichodesmium spp. might enhance resiliency of BFT larvae, despite a projected overall decline in system productivity. To advance understanding and future predictions, the complementary perspectives of oceanographers and fisheries researchers need to come together in studies that focus on the trophic pathways most relevant to fish larvae, the factors that drive variability in spawning regions, and their effects on larval feeding, growth, and survival.


2021 ◽  
Author(s):  
Apurba Das ◽  
Karl-Erich Lindenschmidt

River ice is an important hydraulic and hydrological component of many rivers in the high northern latitudes of the world. It controls the hydraulic characteristics of streamflow, affects the geomorphology of channels, and can cause flooding due to ice-jam formation during ice-cover freeze-up and breakup periods. In recent decades, climate change has considerably altered ice regimes, affecting the severity of ice-jam flooding. Although many approaches have been developed to model river ice regimes and the severity of ice jam flooding, appropriate methods that account for impacts of the future climate on ice-jam flooding have not been well established. Therefore, the main goals of this study are to review the current knowledge of climate change impacts on river ice processes and to assess the current modelling capabilities to determine the severity of ice jams under future climatic conditions. Finally, a conceptual river ice-jam modelling approach is presented for incorporating climate change impacts on ice jams.


2011 ◽  
Vol 58 (8) ◽  
pp. 826-838 ◽  
Author(s):  
Karen Marie Hilligsøe ◽  
Katherine Richardson ◽  
Jørgen Bendtsen ◽  
Lise-Lotte Sørensen ◽  
Torkel Gissel Nielsen ◽  
...  

2017 ◽  
Vol 284 (1860) ◽  
pp. 20170357 ◽  
Author(s):  
Rafał Nawrot ◽  
Paolo G. Albano ◽  
Devapriya Chattopadhyay ◽  
Martin Zuschin

Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature–size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems.


2012 ◽  
Vol 367 (1605) ◽  
pp. 2913-2922 ◽  
Author(s):  
Miguel Lurgi ◽  
Bernat C. López ◽  
José M. Montoya

Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.


Sign in / Sign up

Export Citation Format

Share Document