scholarly journals Monitoring emissions from the 2015 Indonesian fires using CO satellite data

2018 ◽  
Vol 373 (1760) ◽  
pp. 20170307 ◽  
Author(s):  
Narcisa Nechita-Banda ◽  
Maarten Krol ◽  
Guido R. van der Werf ◽  
Johannes W. Kaiser ◽  
Sudhanshu Pandey ◽  
...  

Southeast Asia, in particular Indonesia, has periodically struggled with intense fire events. These events convert substantial amounts of carbon stored as peat to atmospheric carbon dioxide (CO 2 ) and significantly affect atmospheric composition on a regional to global scale. During the recent 2015 El Niño event, peat fires led to strong enhancements of carbon monoxide (CO), an air pollutant and well-known tracer for biomass burning. These enhancements were clearly observed from space by the Infrared Atmospheric Sounding Interferometer (IASI) and the Measurements of Pollution in the Troposphere (MOPITT) instruments. We use these satellite observations to estimate CO fire emissions within an inverse modelling framework. We find that the derived CO emissions for each sub-region of Indonesia and Papua are substantially different from emission inventories, highlighting uncertainties in bottom-up estimates. CO fire emissions based on either MOPITT or IASI have a similar spatial pattern and evolution in time, and a 10% uncertainty based on a set of sensitivity tests we performed. Thus, CO satellite data have a high potential to complement existing operational fire emission estimates based on satellite observations of fire counts, fire radiative power and burned area, in better constraining fire occurrence and the associated conversion of peat carbon to atmospheric CO 2 . A total carbon release to the atmosphere of 0.35–0.60 Pg C can be estimated based on our results. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.

2018 ◽  
Vol 373 (1760) ◽  
pp. 20170407 ◽  
Author(s):  
Paul I. Palmer

The 2015/2016 El Niño was the first major climate variation when there were a range of satellite observations that simultaneously observed land, ocean and atmospheric properties associated with the carbon cycle. These data are beginning to provide new insights into the varied responses of land ecosystems to El Niño, but we are far from fully exploiting the information embodied by these data. Here, we briefly review the atmospheric and terrestrial satellite data that are available to study the carbon cycle. We also outline recommendations for future research, particularly the closer integration of satellite data with forest biometric datasets that provide detailed information about carbon dynamics on a range of timescales. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2006 ◽  
Vol 6 (2) ◽  
pp. 3175-3226 ◽  
Author(s):  
G. R. van der Werf ◽  
J. T. Randerson ◽  
L. Giglio ◽  
G. J. Collatz ◽  
P. S. Kasibhatla ◽  
...  

Abstract. Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001–2004 was derived using newly available active fire and 500 m burned area datasets from MODIS following the approach described by Giglio et al. (2005). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration (Rh), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fAPAR). For the 1997–2004 period, we found that on average approximately 58 Pg C year−1 was fixed by plants, and approximately 95% of this was returned back to the atmosphere via Rh. Another 4%, or 2.5 Pg C year−1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year−1, with a maximum in 1998 (3.2 Pg C year−1) and a minimum in 2000 (2.0 Pg C year−1).


2004 ◽  
Vol 4 (8) ◽  
pp. 2145-2160 ◽  
Author(s):  
B. Langmann ◽  
A. Heil

Abstract. Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.


2021 ◽  
Vol 21 (14) ◽  
pp. 11257-11288
Author(s):  
Simon Rosanka ◽  
Bruno Franco ◽  
Lieven Clarisse ◽  
Pierre-François Coheur ◽  
Andrea Pozzer ◽  
...  

Abstract. The particularly strong dry season in Indonesia in 2015, caused by an exceptionally strong El Niño, led to severe peatland fires resulting in high volatile organic compound (VOC) biomass burning emissions. At the same time, the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the Intertropical Convergence Zone (ITCZ) efficiently transported the resulting primary and secondary pollutants to the upper troposphere and lower stratosphere (UTLS). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS and investigate the effect of in-cloud oxygenated VOC (OVOC) oxidation during such a strong pollution event. This is achieved by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). By comparing modelled columns of the biomass burning marker hydrogen cyanide (HCN) and carbon monoxide (CO) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI), we find that EMAC properly captures the exceptional strength of the Indonesian fires. In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This has a direct impact on the oxidation capacity, resulting in the largest regional reduction in the hydroxyl radical (OH) and nitrogen oxides (NOx). While an increase in ozone (O3) is predicted close to the peatland fires, simulated O3 decreases in eastern Indonesia due to particularly high phenol concentrations. In the ASMA and the ITCZ, the upward transport leads to elevated VOC concentrations in the lower stratosphere, which results in the reduction of OH and NOx and the increase in the hydroperoxyl radical (HO2). In addition, the degradation of VOC emissions from the Indonesian fires becomes a major source of lower stratospheric nitrate radicals (NO3), which increase by up to 20 %. Enhanced phenol levels in the upper troposphere result in a 20 % increase in the contribution of phenoxy radicals to the chemical destruction of O3, which is predicted to be as large as 40 % of the total chemical O3 loss in the UTLS. In the months following the fires, this loss propagates into the lower stratosphere and potentially contributes to the variability of lower stratospheric O3 observed by satellite retrievals. The Indonesian peatland fires regularly occur during El Niño years, and the largest perturbations of radical concentrations in the lower stratosphere are predicted for particularly strong El Niño years. By activating the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened. Global models that neglect in-cloud OVOC oxidation tend to overestimate the impact of such extreme pollution events on the atmospheric composition.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170304 ◽  
Author(s):  
Ana Bastos ◽  
Pierre Friedlingstein ◽  
Stephen Sitch ◽  
Chi Chen ◽  
Arnaud Mialon ◽  
...  

Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions. First, we provide a synthesis of the spatio-temporal evolution of anomalies in net land–atmosphere CO 2 fluxes estimated by two in situ measurements based on atmospheric inversions and 16 land-surface models (LSMs) from TRENDYv6. Simulated changes in ecosystem productivity, decomposition rates and fire emissions are also investigated. Inversions and LSMs generally agree on the decrease and subsequent recovery of the land sink in response to the onset, peak and demise of El Niño conditions and point to the decreased strength of the land carbon sink: by 0.4–0.7 PgC yr −1 (inversions) and by 1.0 PgC yr −1 (LSMs) during 2015/2016. LSM simulations indicate that a decrease in productivity, rather than increase in respiration, dominated the net biome productivity anomalies in response to ENSO throughout the tropics, mainly associated with prolonged drought conditions. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2020 ◽  
Vol 12 (2) ◽  
pp. 250
Author(s):  
Haemi Park ◽  
Wataru Takeuchi ◽  
Kazuhito Ichii

Tropical peatland ecosystems are known as large carbon (C) reservoirs and affect spatial and temporal patterns in C sinks and sources at large scales in response to climate anomalies. In this study, we developed a satellite data-based model to estimate the net biosphere exchange (NBE) in Indonesia and Malaysia by accounting for fire emissions (FE), ecosystem respiration (Re), and gross primary production (GPP). All input variables originated from satellite-based datasets, e.g., the precipitation of global satellite mapping of precipitation (GSMaP), the land surface temperature (LST) of the moderate resolution imaging spectroradiometer (MODIS), the photosynthetically active radiation of MODIS, and the burned area of MODIS fire products. First, we estimated the groundwater table (GWT) by incorporating LST and precipitation into the Keetch–Byram Drought Index (KBDI). The GWT was validated using in-situ measurements, with a root mean square error (RMSE) of 24.97 cm and an r-squared (R2) of 0.61. The daily GWT variations from 2002 to 2018 were used to estimate respiration (Re) based on a relationship between the in situ GWT and flux-tower-observed Re. Fire emissions are a large direct source of CO2 from terrestrial ecosystems into the atmosphere and were estimated by using MODIS fire products and estimated biomass. The GPP was calculated based on the MODIS GPP product after parameter calibration at site scales. As a result, averages of long-term (17 years) Re, GPP, FE, and NBE from whole peatlands in the study area (6°N–11°S, 95–141°E) were 66.71, 39.15, 1.9, and 29.46 Mt C/month, respectively. We found that the NBE from tropical peatlands in the study area was greater than zero, acting as a C source. Re and FE were influenced by El Niño, and the value of the NBE was also high in the El Niño period. In future studies, the status of peatland degradation should be clarified in detail to accurately estimate the C budget by applying appropriate algorithms of Re with delineations of types of anthropogenic impacts (e.g., drainages and fires).


2020 ◽  
Vol 11 (2) ◽  
pp. 435-445 ◽  
Author(s):  
Hideo Shiogama ◽  
Ryuichi Hirata ◽  
Tomoko Hasegawa ◽  
Shinichiro Fujimori ◽  
Noriko N. Ishizaki ◽  
...  

Abstract. In 2015, El Niño contributed to severe droughts in equatorial Asia (EA). The severe droughts enhanced fire activity in the dry season (June–November), leading to massive fire emissions of CO2 and aerosols. Based on large event attribution ensembles of the MIROC5 atmospheric global climate model, we suggest that historical anthropogenic warming increased the chances of meteorological droughts exceeding the 2015 observations in the EA area. We also investigate changes in drought in future climate simulations, in which prescribed sea surface temperature data have the same spatial patterns as the 2015 El Niño with long-term warming trends. Large probability increases of stronger droughts than the 2015 event are projected when events like the 2015 El Niño occur in the 1.5 and 2.0 ∘C warmed climate ensembles according to the Paris Agreement goals. Further drying is projected in the 3.0 ∘C ensemble according to the current mitigation policies of nations. We use observation-based empirical functions to estimate burned area, fire CO2 emissions and fine (<2.5 µm) particulate matter (PM2.5) emissions from these simulations of precipitation. There are no significant increases in the chances of burned area and CO2 and PM2.5 emissions exceeding the 2015 observations due to past anthropogenic climate change. In contrast, even if the 1.5 and 2.0 ∘C goals are achieved, there are significant increases in the burned area and CO2 and PM2.5 emissions. If global warming reaches 3.0 ∘C, as is expected from the current mitigation policies of nations, the chances of burned areas and CO2 and PM2.5 emissions exceeding the 2015 observed values become approximately 100 %, at least in the single model ensembles. We also compare changes in fire CO2 emissions due to climate change and the land-use CO2 emission scenarios of five shared socioeconomic pathways, where the effects of climate change on fire are not considered. There are two main implications. First, in a national policy context, future EA climate policy will need to consider these climate change effects regarding both mitigation and adaptation aspects. Second is the consideration of fire increases changing global CO2 emissions and mitigation strategies, which suggests that future climate change mitigation studies should consider these factors.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170312 ◽  
Author(s):  
Kieran Withey ◽  
Erika Berenguer ◽  
Alessandro Ferraz Palmeira ◽  
Fernando D. B. Espírito-Santo ◽  
Gareth D. Lennox ◽  
...  

Wildfires produce substantial CO 2 emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015–2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO 2 emissions during the 2015–2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha −1 , mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha −1 ). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015–2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO 2 emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO 2 emissions. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2012 ◽  
Vol 12 (9) ◽  
pp. 4341-4364 ◽  
Author(s):  
V. Huijnen ◽  
J. Flemming ◽  
J. W. Kaiser ◽  
A. Inness ◽  
J. Leitão ◽  
...  

Abstract. The severe wildfires in western Russia during July–August 2010 coincided with a strong heat wave and led to large emissions of aerosols and trace gases such as carbon monoxide (CO), hydrocarbons and nitrogen oxides into the troposphere. This extreme event is used to evaluate the ability of the global MACC (Monitoring Atmospheric Composition and Climate) atmospheric composition forecasting system to provide analyses of large-scale pollution episodes and to test the respective influence of a priori emission information and data assimilation on the results. Daily 4-day hindcasts were conducted using assimilated aerosol optical depth (AOD), CO, nitrogen dioxide (NO2) and ozone (O3) data from a range of satellite instruments. Daily fire emissions were used from the Global Fire Assimilation System (GFAS) version 1.0, derived from satellite fire radiative power retrievals. The impact of accurate wildfire emissions is dominant on the composition in the boundary layer, whereas the assimilation system influences concentrations throughout the troposphere, reflecting the vertical sensitivity of the satellite instruments. The application of the daily fire emissions reduces the area-average mean bias by 63% (for CO), 60% (O3) and 75% (NO2) during the first 24 h with respect to independent satellite observations, compared to a reference simulation with a multi-annual mean climatology of biomass burning emissions. When initial tracer concentrations are further constrained by data assimilation, biases are reduced by 87, 67 and 90%. The forecast accuracy, quantified by the mean bias up to 96 h lead time, was best for all compounds when using both the GFAS emissions and assimilation. The model simulations suggest an indirect positive impact of O3 and CO assimilation on hindcasts of NO2 via changes in the oxidizing capacity. However, the quality of local hindcasts was strongly dependent on the assumptions made for forecasted fire emissions. This was well visible from a relatively poor forecast accuracy quantified by the root mean square error, as well as the temporal correlation with respect to ground-based CO total column data and AOD. This calls for a more advanced method to forecast fire emissions than the currently adopted persistency approach. The combined analysis of fire radiative power observations, multiple trace gas and aerosol satellite observations, as provided by the MACC system, results in a detailed quantitative description of the impact of major fires on atmospheric composition, and demonstrate the capabilities for the real-time analysis and forecasts of large-scale fire events.


2006 ◽  
Vol 6 (11) ◽  
pp. 3423-3441 ◽  
Author(s):  
G. R. van der Werf ◽  
J. T. Randerson ◽  
L. Giglio ◽  
G. J. Collatz ◽  
P. S. Kasibhatla ◽  
...  

Abstract. Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001–2004 was derived using newly available active fire and 500 m. burned area datasets from MODIS following the approach described by Giglio et al. (2006). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including organic soil layer and peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration (Rh), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fAPAR). For the 1997–2004 period, we found that on average approximately 58 Pg C year−1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via Rh. Another 4%, or 2.5 Pg C year−1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year−1, with a maximum in 1998 (3.2 Pg C year−1) and a minimum in 2000 (2.0 Pg C year−1).


Sign in / Sign up

Export Citation Format

Share Document