scholarly journals Multicellular behaviour enables cooperation in microbial cell aggregates

2019 ◽  
Vol 374 (1786) ◽  
pp. 20190077 ◽  
Author(s):  
Ali Ebrahimi ◽  
Julia Schwartzman ◽  
Otto X. Cordero

Oligosaccharides produced from the extracellular hydrolysis of biological materials can act as common goods that promote cooperative growth in microbial populations, whereby cell–cell aggregation increases both the per capita availability of resources and the per-cell growth rate. However, aggregation can also have detrimental consequences for growth, as gradients form within aggregates limiting the resource accessibility. We built a computational model, which predicts cooperation is restricted in dense cell aggregates larger than 10 µm because of the emergence of polymer and oligomer counter gradients. We compared these predictions to experiments performed with two well-studied alginate-degrading strains of Vibrio splendidus , which varied in their ability to secrete alginate lyase. We observed that both strains can form large aggregates (less than 50 µm), overcoming diffusion limitation by rearranging their internal structure. The stronger enzyme producer grew non-cooperatively and formed aggregates with internal channels that allowed exchange between the bulk environment and the aggregate, whereas the weak enzyme producer showed strongly cooperative growth and formed dense aggregates in which cells near the core mixed by active swimming. Our simulations suggest that the mixing and channelling reduce diffusion limitation and allow cells to uniformly grow in aggregates. Together, these data demonstrate that bacterial behaviour can help overcome competition imposed by resource gradients within cell aggregates. This article is part of a discussion meeting issue ‘Single cell ecology’.

2019 ◽  
Author(s):  
Ali Ebrahimi ◽  
Julia Schwartzman ◽  
Otto X. Cordero

SummaryDuring the degradation of biological materials such as biopolymers, extracellular enzymes liberate oligosaccharides that act as common goods and become available for all cells in the local neighborhood. This phenomenon can lead to cooperative growth, whereby cell-cell aggregation increases both the per-capita availability of resources and the per cell growth rate. However, aggregation can also have detrimental consequences for growth, as gradients form within aggregates limiting the resource accessibility. We used a computational model to show that high bacterial densities and high enzyme secretion rates restrict cooperation in aggregates larger than 10μm, due to the emergence of polymer and oligomer counter-gradients. We compared these predictions against experiments performed with two well-studied alginate degrading Vibrios, one of which displayed a strong density dependent growth. We observed that both strains can form large aggregates (<50μm), overcoming diffusion limitation by rearranging their internal structure. The non-cooperative, strong enzyme producer formed aggregates with internal channels that allowed exchange between the bulk environment and the aggregate core, whereas the cooperative, weak enzyme producer formed dense aggregates that developed a hollow structure as they grew. These internal structures allowed cells to avoid overcrowded areas near the core, enabling the development of large cell aggregates. Our study shows that bacterial behavior can help overcome competition imposed by resource gradients within cell aggregates.


2009 ◽  
Vol 11 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Guanglei Liu ◽  
Lixi Yue ◽  
Zhe Chi ◽  
Wengong Yu ◽  
Zhenming Chi ◽  
...  

1995 ◽  
Vol 36 (2) ◽  
pp. 204-209
Author(s):  
C.-M. Chai ◽  
T. Almén ◽  
P. Aspelin ◽  
L. Bååth

Solutions of the nonionic monomeric contrast medium iohexol (300 mg I/ml) with and without added NaCl were investigated for effects on red blood cell aggregation and blood coagulation. Three volumes of a test solution were mixed in test tubes with one volume of human blood. During 30 min samples of the mixture were taken for investigation. Six test solutions were used: 1) iohexol, 2) iohexol+glucose 280 mM, 3) iohexol+NaCl 150 mM, 4) glucose 280 mM, 5) glucose 140 mM+NaCl 75 mM, 6) NaCl 150 mM. Test solutions with NaCl caused no aggregation. Test solutions without NaCl always caused macroscopic red cell aggregates. These aggregates always disappeared when saline was added to the sample. The macroscopic red cell aggregates could be dispersed to microscopic aggregates by shaking the test tubes. During the next 30 min macroscopic aggregates returned in the glucose solution but not in the iohexol solutions. In 30 min, blood mixed with iohexol solutions never coagulated while blood layered on top of the same iohexol solutions always coagulated. Blood mixed with solutions 5 and 6, both without iohexol, always coagulated. It is concluded that adding 150 mM NaCl to iohexol did not eliminate its ability to antico-agulate whole blood, but inhibited its ability to aggregate red cells. This inhibition was not caused by the osmotic effects of the added NaCl.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4186-4194 ◽  
Author(s):  
Christelle Perrault ◽  
Nadine Ajzenberg ◽  
Paulette Legendre ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
...  

Abstract The conformation of the A1 domain of von Willebrand factor (vWF) is a critical determinant of its interaction with the glycoprotein (GP) Ib/V/IX complex. To better define the regulatory mechanisms of vWF A1 domain binding to the GPIb/V/IX complex, we studied vWF-dependent aggregation properties of a cell line overexpressing the GPIb, GPIbβ, and GPIX subunits (CHO-GPIbβ/IX cells). We found that CHO-GPIbβ/IX cell aggregation required the presence of both soluble vWF and ristocetin. Ristocetin-induced CHO-GPIbβ/IX cell aggregation was completely inhibited by the recombinant VCL fragment of vWF that contains the A1 domain. Surprisingly, the substitution of heparin for ristocetin resulted in the formation of CHO-GPIbβ/IX cell aggregates. Using monoclonal antibodies blocking vWF interaction with GPIb/V/IX or mocarhagin, a venom metalloproteinase that removes the amino-terminal fragment of GPIb extending from aa 1 to 282, we demonstrated that both ristocetin- and heparin-induced aggregations involved an interaction between the A1 domain of vWF and the GPIb subunit of the GPIb/V/IX complex. The involvement of heparin in cell aggregation was also demonstrated after treatment of heparin with heparinase that abolished CHO-GPIbβ/IX cell aggregation. These results indicated that heparin was able to induce vWF-dependent CHO-GPIbβ/IX cell aggregation. In conclusion, we demonstrated that heparin is capable of positively modulating the vWF interaction with the GPIb/V/IX complex.


2021 ◽  
Author(s):  
Anjali Mahilkar ◽  
Phaniendra Alugoju ◽  
Vijendra Kavatalkar ◽  
Rajeshkannan E. ◽  
Jayadeva Bhat ◽  
...  

Adaptive diversification of an isogenic population, and its molecular basis has been a subject of a number of studies in the last few years. Microbial populations offer a relatively convenient model system to study this question. In this context, an isogenic population of bacteria (E. coli, B. subtilis, and Pseudomonas) has been shown to lead to genetic diversification in the population, when propagated for a number of generations. This diversification is known to occur when the individuals in the population have access to two or more resources/environments, which are separated either temporally or spatially. Here, we report adaptive diversification in an isogenic population of yeast, S. cerevisiae, when propagated in an environment containing melibiose as the carbon source. The diversification is driven due to a public good, enzyme α-galactosidase, leading to hydrolysis of melibiose into two distinct resources, glucose and galactose. The diversification is driven by a mutations at a single locus, in the GAL3 gene in the GAL/MEL regulon in the yeast.


2010 ◽  
Vol 72 (3) ◽  
pp. 496-506 ◽  
Author(s):  
Hong Wang ◽  
Mikko Vuorela ◽  
Anna-Leena Keränen ◽  
Tuija M. Lehtinen ◽  
Anssi Lensu ◽  
...  

Author(s):  
A. Pshenichnikova

The growth and accumulation of carotenoid pigment and poly-3-hydroxybutyrate by a new strain of pink-colored facultative methylotrophic bacterium Methylorubrum extorquens LP in suspension culture and in cell aggregates were studied. The parameters that promote cell aggregation and the formation of poly-3-hydroxybutyrate have been determined.


2019 ◽  
Vol 116 (46) ◽  
pp. 23309-23316 ◽  
Author(s):  
Ali Ebrahimi ◽  
Julia Schwartzman ◽  
Otto X. Cordero

The recycling of particulate organic matter (POM) by microbes is a key part of the global carbon cycle. This process is mediated by the extracellular hydrolysis of polysaccharides, which can trigger social behaviors in bacteria resulting from the production of public goods. Despite the potential importance of public good-mediated interactions, their relevance in the environment remains unclear. In this study, we developed a computational and experimental model system to address this challenge and studied how the POM depolymerization rate and its uptake efficiency (2 main ecosystem function parameters) depended on social interactions and spatial self-organization on particle surfaces. We found an emergent trade-off between rate and efficiency resulting from the competition between oligosaccharide diffusion and cellular uptake, with low rate and high efficiency being achieved through cell-to-cell cooperation between degraders. Bacteria cooperated by aggregating in cell clusters of ∼10 to 20 µm, in which cells were able to share public goods. This phenomenon, which was independent of any explicit group-level regulation, led to the emergence of critical cell concentrations below which degradation did not occur, despite all resources being available in excess. In contrast, when particles were labile and turnover rates were high, aggregation promoted competition and decreased the efficiency of carbon use. Our study shows how social interactions and cell aggregation determine the rate and efficiency of particulate carbon turnover in environmentally relevant scenarios.


1964 ◽  
Vol 207 (5) ◽  
pp. 1035-1040 ◽  
Author(s):  
Roe E. Wells ◽  
Thomas H. Gawronski ◽  
Paul J. Cox ◽  
Richard D. Perera

The influence of fibrinogen on the flow properties of red cell suspensions (hematocrit 41) was studied by viscometry at low rates of shear (0.1–20 sec–1). These findings were correlated with sedimentation rates and photomicrographical studies of cell aggregation. Fibrinogen concentration was varied from 0.3 to 2.0 g/100 ml. The viscosity of the pure solutions of fibrinogen was independent of shear rate, ranging from 0.87 to 1.7 centipoise (cp) at 37 C. The viscosity of the cell suspensions at 10 sec–1 varied from 4.3 cp in 0.3 g/100 ml fibrinogen to 14 cp in 2 g/100 ml fibrinogen. All suspensions were markedly dependent on shear rate, viscosity increasing in exponential-like fashion as shear rate decreased. Extrapolation of plots of shear stress1/2 versus shear rate1/2 revealed the suspensions to sustain a finite stress without deformation or flow, the "yield value" increasing as fibrinogen concentration increased. Photomicrographs of dilute cell suspensions revealed the formation of cell aggregates and rouleaux, increasing in size and descent velocity as fibrinogen concentration increased.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4632-4644 ◽  
Author(s):  
Juan M. Serrador ◽  
Marta Nieto ◽  
José L. Alonso-Lebrero ◽  
Miguel A. del Pozo ◽  
Javier Calvo ◽  
...  

Abstract Chemokines as well as the signaling through the adhesion molecules intercellular adhesion molecule (ICAM)-3 and CD43 are able to induce in T lymphocytes their switching from a spherical to a polarized motile morphology, with the formation of a uropod at the rear of the cell. We investigated here the role of CD43 in the regulation of T-cell polarity, CD43-cytoskeletal interactions, and lymphocyte aggregation. Pro-activatory anti-CD43 monoclonal antibody (MoAb) induced polarization of T lymphocytes with redistribution of CD43 to the uropod and the CCR2 chemokine receptor to the leading edge of the cell. Immunofluorescence analysis showed that all three ezrin-radixin-moesin (ERM) actin-binding proteins localized in the uropod of both human T lymphoblasts stimulated with anti-CD43 MoAb and tumor-infiltrating T lymphocytes. Radixin localized at the uropod neck, whereas ezrin and moesin colocalized with CD43 in the uropod. Biochemical analyses showed that ezrin and moesin coimmunoprecipitated with CD43 in T lymphoblasts. Furthermore, in these cells, the CD43-associated moesin increased after stimulation through CD43. The interaction of moesin and ezrin with CD43 was specifically mediated by the cytoplasmic domain of CD43, as shown by precipitation of both ERM proteins with a GST-fusion protein containing the CD43 cytoplasmic tail. Videomicroscopy analysis of homotypic cell aggregation induced through CD43 showed that cellular uropods mediate cell-cell contacts and lymphocyte recruitment. Immunofluorescence microscopy performed in parallel showed that uropods enriched in CD43 and moesin localized at the cell-cell contact areas of cell aggregates. The polarization and homotypic cell aggregation induced through CD43 was prevented by butanedione monoxime, indicating the involvement of myosin cytoskeleton in these phenomena. Altogether, these data indicate that CD43 plays an important regulatory role in remodeling T-cell morphology, likely through its interaction with actin-binding proteins ezrin and moesin. In addition, the redistribution of CD43 to the uropod region of migrating lymphocytes and during the formation of cell aggregates together with the enhancing effect of anti-CD43 antibodies on lymphocyte cell recruitment suggest that CD43 plays a key role in the regulation of cell-cell interactions during lymphocyte traffic.


Sign in / Sign up

Export Citation Format

Share Document