scholarly journals Co-producing ecosystem services for adapting to climate change

2020 ◽  
Vol 375 (1794) ◽  
pp. 20190119 ◽  
Author(s):  
Sandra Lavorel ◽  
Bruno Locatelli ◽  
Matthew J. Colloff ◽  
Enora Bruley

Ecosystems can sustain social adaptation to environmental change by protecting people from climate change effects and providing options for sustaining material and non-material benefits as ecological structure and functions transform. Along adaptation pathways, people navigate the trade-offs between different ecosystem contributions to adaptation, or adaptation services (AS), and can enhance their synergies and co-benefits as environmental change unfolds. Understanding trade-offs and co-benefits of AS is therefore essential to support social adaptation and requires analysing how people co-produce AS. We analysed co-production along the three steps of the ecosystem cascade: (i) ecosystem management; (ii) mobilization; and (iii) appropriation, social access and appreciation. Using five exemplary case studies across socio-ecosystems and continents, we show how five broad mechanisms already active for current ecosystem services can enhance co-benefits and minimize trade-offs between AS: (1) traditional and multi-functional land/sea management targeting ecological resilience; (2) pro-active management for ecosystem transformation; (3) co-production of novel services in landscapes without compromising other services; (4) collective governance of all co-production steps; and (5) feedbacks from appropriation, appreciation of and social access to main AS. We conclude that knowledge and recognition of co-production mechanisms will enable pro-active management and governance for collective adaptation to ecosystem transformation. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.

2018 ◽  
Vol 28 (7) ◽  
pp. 1884-1896 ◽  
Author(s):  
Katharina Albrich ◽  
Werner Rammer ◽  
Dominik Thom ◽  
Rupert Seidl

2019 ◽  
Vol 27 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Maitane Erdozain ◽  
Erika C. Freeman ◽  
Camille Ouellet Dallaire ◽  
Sonja Teichert ◽  
Harry W. Nelson ◽  
...  

The Canadian boreal zone provides extractive goods and services (provisioning ecosystem services (PrES)) to domestic and global markets and makes a significant contribution to the Canadian economy. The intensity and location of these extractive activities, however, may positively or negatively affect the availability of other benefits that the Canadian and global society receive from the boreal. Where PrES compete, managing these activities along with their impacts to boreal ecosystems becomes a balancing act between the need for resource extraction and the continued availability of the other benefits from ecosystems. Management measures and policies are more likely to succeed if they are designed with foresight, which means accounting for how demand, a key driver of change in the boreal, may change in the future. To help this process, we present three divergent, yet plausible future scenarios based on the analysis of: (i) the capacity of the boreal to provide wood products, fossil fuels, metals and minerals, and hydropower and other renewables; (ii) past trends (1985–2015) and key events in the demand for these PrES; (iii) the interaction of demand for PrES with other drivers of change to the boreal zone; and (iv) the synergies and trade-offs between PrES. We find that historically and currently the capacity of the boreal to provide these PrES exceeds the amount currently supplied. However, the capacity of different PrES and location of extractive activities are spatially dispersed creating a spatial and temporal patchwork of associated risks to local ecosystem integrity and the supply of non-PrES. In addition, these scenarios suggest that the future of boreal PrES is very uncertain and highly dependent on how other drivers of change (namely governance and geopolitics, societal values and climate change) play out in the future. Given the spatial complexity, we find that the cumulative effect of these drivers (e.g., climate change) will determine what paths unfold for different areas of the boreal, and we conclude that careful consideration and planning must be given to ensure that the balance between PrES and non-PrES is maintained.


2019 ◽  
Vol 89 (2) ◽  
pp. e01345 ◽  
Author(s):  
George Van Houtven ◽  
Jennifer Phelan ◽  
Christopher Clark ◽  
Robert D. Sabo ◽  
John Buckley ◽  
...  

2020 ◽  
Author(s):  
Charlotte Marcinko ◽  
Andrew Harfoot ◽  
Tim Daw ◽  
Derek Clarke ◽  
Sugata Hazra ◽  
...  

<p>The United Nations Sustainable Development Goals (SDGs) promote sustainable development and aim to address multiple challenges including those related to poverty, hunger, inequality, climate change and environmental degradation. Interlinkages between SDGS means there is potential for interactions, synergies and trade-offs between individual goals across multiple temporal and spatial scales. We aim to develop an Integrated Assessment Model (IAM) of a complex deltaic socio-ecological system where opportunities and trade-offs between the SDGs can be analysed. This is designed to inform local/regional policy. We focus on the Sundarban Biosphere Reserve (SBR) within the Indian Ganga Delta. This is home to 5.6 million often poor people with a strong dependence on rural livelihoods and also includes the Indian portion of the world’s largest mangrove forest – the Sundarbans. The area is subject to multiple drivers of environmental change operating at multiple scales (e.g. global climate change and sea-level rise, deltaic subsidence, extensive land use conversion and widespread migration). Here we discuss the challenges of linking models of human and natural systems to each other in the context of local policy decisions and SDG indicators. Challenges include linking processes derived at multiple spatial and temporal scales and data limitations. We present a framework for an IAM, based on the Delta Dynamic Emulator Model (ΔDIEM), to investigate the affects of current and future trends in environmental change and policy decisions within the SBR across a broad range of sub-thematic SDG indicators. This work brings together a wealth of experience in understanding and modelling changes in complex human and natural systems within deltas from previous projects (ESPA Deltas and DECCMA), along with local government and stakeholder expert knowledge within the Indian Ganga Delta.</p>


2018 ◽  
Vol 13 (4) ◽  
pp. 045012 ◽  
Author(s):  
Martin Gutsch ◽  
Petra Lasch-Born ◽  
Chris Kollas ◽  
Felicitas Suckow ◽  
Christopher P O Reyer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Purity Rima Mbaabu ◽  
Daniel Olago ◽  
Maina Gichaba ◽  
Sandra Eckert ◽  
René Eschen ◽  
...  

AbstractGrassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.


2020 ◽  
Vol 12 (3) ◽  
pp. 487-499
Author(s):  
Alicia Azpeleta Tarancón ◽  
Yeon-Su Kim ◽  
Thora Padilla ◽  
Peter Z. Fulé ◽  
Andrew J. Sánchez Meador

AbstractThe Mescalero Apache Tribal Lands (MATL) provide a diverse range of ecosystem services, many of which are of fundamental importance for the Mescalero Apache Tribe’s well-being. Managing forests on MATL, especially under climate change, involves prioritizing certain ecosystem services. We used an iterative survey of experts’ opinions to identify those ecosystem services that 1) have high utility—services that the Tribe uses, or could use, and are obtained directly or indirectly from the MATL; 2) are irreplaceable—services that cannot be provided by any other natural resource; and 3) are under a high level of threat—services at risk of declining or being lost directly or indirectly by climate change and thus are critical for management. Both scientists and practitioners identified water and cultural services as management priorities. Management recommendations to mitigate and adapt to climate change effects include reintroduction of fire in the landscape, assisted migration, creation of age/size mosaics across the landscape, and incorporation of green energy. Incorporating human perspectives into natural resource management is a critical component to maintain and adapt social–ecological systems to climate change, especially for Indigenous communities with inherent rights of sovereignty who are deeply connected to natural resources. This study demonstrates how knowledge systems are complementary: diverse perspectives related to values and threats of ecosystems can be incorporated to coconstruct ecosystem management decisions.


Sign in / Sign up

Export Citation Format

Share Document