scholarly journals Translational bioadhesion research: embracing biology without tokenism

2019 ◽  
Vol 374 (1784) ◽  
pp. 20190207 ◽  
Author(s):  
J. Herbert Waite

Bioadhesion has attracted a sizable research community of scientists and engineers that is striving increasingly for translational outcomes in anti-fouling and bioinspired adhesion initiatives. As bioadhesion is highly context-dependent, attempts to trivialize or gloss over the fundamental physical, chemical and biological sciences involved will compromise the relevance and durability of translation. This article is part of the theme issue ‘Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.

Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


2019 ◽  
Vol 3 (5) ◽  
pp. 435-443 ◽  
Author(s):  
Addy Pross

Despite the considerable advances in molecular biology over the past several decades, the nature of the physical–chemical process by which inanimate matter become transformed into simplest life remains elusive. In this review, we describe recent advances in a relatively new area of chemistry, systems chemistry, which attempts to uncover the physical–chemical principles underlying that remarkable transformation. A significant development has been the discovery that within the space of chemical potentiality there exists a largely unexplored kinetic domain which could be termed dynamic kinetic chemistry. Our analysis suggests that all biological systems and associated sub-systems belong to this distinct domain, thereby facilitating the placement of biological systems within a coherent physical/chemical framework. That discovery offers new insights into the origin of life process, as well as opening the door toward the preparation of active materials able to self-heal, adapt to environmental changes, even communicate, mimicking what transpires routinely in the biological world. The road to simplest proto-life appears to be opening up.


Author(s):  
Torin Alter

The knowledge argument is an argument against physicalism, the view that the world is wholly physical. It was developed by Frank Jackson (1943–) and is based on the following thought experiment. Everything that can be known through the physical, chemical, and biological sciences – the complete physical truth – has been discovered. Mary is a brilliant scientist who is raised in a black-and-white room. She has never had colour experiences. But she learns the complete physical truth, which includes the completed science of colour vision, by reading books and watching lectures on a black-and-white television monitor. Then she leaves the room and sees colours. Jackson’s argument runs roughly as follows. When Mary leaves the room, she learns something new. She learns what it is like to see in colour. Evidently, the complete physical truth is not the complete truth about the world. Ergo, physicalism is false. Some react by denying that Mary learns anything when she leaves the room. Others react by accepting that she learns something but denying that this refutes physicalism. Still others accept the argument as sound. The ensuing discussion has led to a variety of insights about consciousness and its place in the natural world.


1988 ◽  
Vol 21 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Nicholas Russell

Interest in contemporary scientific history has concentrated on physics and engineering and its most obvious growth has been in America. By contrast, there has been a relative neglect of the biological sciences, especially in Great Britain. This concern with contemporary scientific history has been an autonomous growth among physical scientists and engineers. There has not yet been any significant development of an historical dimension among modern biologists. Most of those who do study the history of biology are concerned with natural history in the nineteenth century and before, with the largest group concentrating on the Darwinian Revolution. Students of the history of twentieth century biology are just beginning to emerge, but may find themselves uniquely disadvantaged compared with observers of the sciences from earlier centuries, or even of the physical sciences and engineering in the twentieth century, unless certain things are done rather quickly.


Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 76 ◽  
Author(s):  
Farhana R. Pinu ◽  
David J. Beale ◽  
Amy M. Paten ◽  
Konstantinos Kouremenos ◽  
Sanjay Swarup ◽  
...  

The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent ‘Australian and New Zealand Metabolomics Conference’ (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.


2020 ◽  
Vol 375 (1807) ◽  
pp. 20190377
Author(s):  
Andreas Deutsch ◽  
Peter Friedl ◽  
Luigi Preziosi ◽  
Guy Theraulaz

Collective migration has become a paradigm for emergent behaviour in systems of moving and interacting individual units resulting in coherent motion. In biology, these units are cells or organisms. Collective cell migration is important in embryonic development, where it underlies tissue and organ formation, as well as pathological processes, such as cancer invasion and metastasis. In animal groups, collective movements may enhance individuals' decisions and facilitate navigation through complex environments and access to food resources. Mathematical models can extract unifying principles behind the diverse manifestations of collective migration. In biology, with a few exceptions, collective migration typically occurs at a ‘mesoscopic scale’ where the number of units ranges from only a few dozen to a few thousands, in contrast to the large systems treated by statistical mechanics. Recent developments in multi-scale analysis have allowed linkage of mesoscopic to micro- and macroscopic scales, and for different biological systems. The articles in this theme issue on ‘Multi-scale analysis and modelling of collective migration’ compile a range of mathematical modelling ideas and multi-scale methods for the analysis of collective migration. These approaches (i) uncover new unifying organization principles of collective behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow us to define similarities and differences of collective behaviour in groups of cells and organisms. As a common theme, self-organized collective migration is the result of ecological and evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing physiological collective behaviours also underlie pathological processes, albeit with different upstream inputs and consequences for the group. This article is part of the theme issue ‘Multi-scale analysis and modelling of collective migration in biological systems’.


2017 ◽  
Vol 18 (2) ◽  
pp. 16-33
Author(s):  
Ibrahim A. Shogar

This paper investigates the philosophical foundations of modern bioengineering to articulate its ethical framework. Engineering as an ultimate mechanism to transform knowledge into practice is essential for both physical and biological sciences. It reduces data, concepts, and designs to pictorial forms. The integration of engineering with the newly emerging biosciences, has presented a unique opportunity to overcome the major challenges that face the environmental and human health. To harness potentials of bioengineering and establish a sustainable foundation for green technology, modern scientists and engineers need to be acquainted with the normative questions of science. In addition to acquiring the general principles of scientific research and identifying the intrinsic goals of the endeavour, philosophy of bioengineering exposes bioengineers to both the descriptive ‘how’ questions of the physical world as well as the normative ‘why’ questions of values. Such an interdisciplinary approach is significant, not only for inspiring to acquire the genuine knowledge of the existing world, but also to expose the bioengineers to their ethical and social responsibilities. Besides introducing the conceptual framework of bioengineering, this paper has investigated the three major philosophies that have been dominating the theoretical presuppositions of scientific research method in history. Namely, (i) Systems biology approach; (ii) Evolutionary biology approach; and (iii) Mechanical view approach. To establish the ethical foundation of modern bioengineering, the paper, also has conducted an analytical study on various branches of the emerging discipline of bioscience.The paper has concluded that adopting the interdisciplinary approach in research and education is essential to harness potentials of bioengineering and to establish foundations of green technology. To achieve the final objectives of bioengineering, both the practical and theoretical knowledge of values must be acquired. The former is essential for invention and innovation; meanwhile the later exposes bioengineers to the integrated discipline of knowledge and values. 


Sign in / Sign up

Export Citation Format

Share Document