scholarly journals The importance of life history and population regulation for the evolution of social learning

2020 ◽  
Vol 375 (1803) ◽  
pp. 20190492 ◽  
Author(s):  
Dominik Deffner ◽  
Richard McElreath

Social learning and life history interact in human adaptation, but nearly all models of the evolution of social learning omit age structure and population regulation. Further progress is hindered by a poor appreciation of how life history affects selection on learning. We discuss why life history and age structure are important for social learning and present an exemplary model of the evolution of social learning in which demographic properties of the population arise endogenously from assumptions about per capita vital rates and different forms of population regulation. We find that, counterintuitively, a stronger reliance on social learning is favoured in organisms characterized by ‘fast’ life histories with high mortality and fertility rates compared to ‘slower’ life histories typical of primates. Long lifespans make early investment in learning more profitable and increase the probability that the environment switches within generations. Both effects favour more individual learning. Additionally, under fertility regulation (as opposed to mortality regulation), more juveniles are born shortly after switches in the environment when many adults are not adapted, creating selection for more individual learning. To explain the empirical association between social learning and long life spans and to appreciate the implications for human evolution, we need further modelling frameworks allowing strategic learning and cumulative culture. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.

2009 ◽  
Vol 364 (1523) ◽  
pp. 1499-1509 ◽  
Author(s):  
Shripad Tuljapurkar ◽  
Jean-Michel Gaillard ◽  
Tim Coulson

Environmental stochasticity is known to play an important role in life-history evolution, but most general theory assumes a constant environment. In this paper, we examine life-history evolution in a variable environment, by decomposing average individual fitness (measured by the long-run stochastic growth rate) into contributions from average vital rates and their temporal variation. We examine how generation time, demographic dispersion (measured by the dispersion of reproductive events across the lifespan), demographic resilience (measured by damping time), within-year variances in vital rates, within-year correlations between vital rates and between-year correlations in vital rates combine to determine average individual fitness of stylized life histories. In a fluctuating environment, we show that there is often a range of cohort generation times at which the fitness is at a maximum. Thus, we expect ‘optimal’ phenotypes in fluctuating environments to differ from optimal phenotypes in constant environments. We show that stochastic growth rates are strongly affected by demographic dispersion, even when deterministic growth rates are not, and that demographic dispersion also determines the response of life-history-specific average fitness to within- and between-year correlations. Serial correlations can have a strong effect on fitness, and, depending on the structure of the life history, may act to increase or decrease fitness. The approach we outline takes a useful first step in developing general life-history theory for non-constant environments.


2007 ◽  
Vol 55 (3) ◽  
pp. 273 ◽  
Author(s):  
David A. Keith ◽  
Mark G. Tozer ◽  
Tracey J. Regan ◽  
Helen M. Regan

Persistence niches are expected to favour qualitatively different plant life histories compared with regeneration niches. In fire-prone habitats, for example, resprouting plants may be expected to exploit persistence niches, whereas obligate-seeders by definition exploit regeneration niches. Resprouter life histories should be typified by high rates of survival, which may be offset by relatively low rates of growth and reproduction. This combination of characters is expected to result from trade-offs in resource allocation and because the longevity of individual plants should buffer their populations against the effects of recruitment failure. We asked whether two resprouting perennial shrubs, Epacris barbata Melville and Xanthorrhoea resinifera (Sol. Ex Kite) E.C.Nelson & D.J.Bedford, exhibited the life-history character combinations that are expected for species exploiting a persistence niche. We also investigated how a change in habitat suitability caused by the invasion of a root pathogen may limit the ability of these species to occupy persistence niches. Demographic censuses of several years’ duration in two populations of each species yielded estimates of vital rates that were consistent with the life-history profile expected for a persistence niche. Rates of background survival were high and rates of fire-related mortality were low in both species. As expected, these were associated with low rates of growth and seedling establishment, although rates of seed production and viability were relatively high in both species. The importance of survival was confirmed by stochastic population models, which showed that population viability was more sensitive to decreases in survival of mature plants and increases in fire mortality of established plants than to changes in other vital rates. Seedling growth rates were also relatively important in E. barbata. Populations of both species that had been infected by root rot disease, Phytophthora cinnamomi, had substantially reduced survival rates and, consequently, reduced population viability. These effects were more extreme in E. barbata than in X. resinifera. We conclude that processes that reduce survival, such as disease infection and habitat loss, rather than processes that impede seed production and recruitment mediate the persistence niche. However, we discuss the possibility that this dependency might be mitigated by high fecundity if infrequent conditions that permit large recruitment events have so far eluded detection.


2017 ◽  
Vol 114 (30) ◽  
pp. 7892-7899 ◽  
Author(s):  
Alison Gopnik ◽  
Shaun O’Grady ◽  
Christopher G. Lucas ◽  
Thomas L. Griffiths ◽  
Adrienne Wente ◽  
...  

How was the evolution of our unique biological life history related to distinctive human developments in cognition and culture? We suggest that the extended human childhood and adolescence allows a balance between exploration and exploitation, between wider and narrower hypothesis search, and between innovation and imitation in cultural learning. In particular, different developmental periods may be associated with different learning strategies. This relation between biology and culture was probably coevolutionary and bidirectional: life-history changes allowed changes in learning, which in turn both allowed and rewarded extended life histories. In two studies, we test how easily people learn an unusual physical or social causal relation from a pattern of evidence. We track the development of this ability from early childhood through adolescence and adulthood. In the physical domain, preschoolers, counterintuitively, perform better than school-aged children, who in turn perform better than adolescents and adults. As they grow older learners are less flexible: they are less likely to adopt an initially unfamiliar hypothesis that is consistent with new evidence. Instead, learners prefer a familiar hypothesis that is less consistent with the evidence. In the social domain, both preschoolers and adolescents are actually the most flexible learners, adopting an unusual hypothesis more easily than either 6-y-olds or adults. There may be important developmental transitions in flexibility at the entry into middle childhood and in adolescence, which differ across domains.


2015 ◽  
Author(s):  
Ryan Baldini

A common belief among human life history researchers is that "harsher" environments - i.e., those with higher mortality rates and resource stress - select for "fast" life histories, i.e. earlier reproduction and faster senescence. I show that these "harsh environments, fast life histories" - or HEFLH - hypotheses are poorly supported by evolutionary theory. First, I use a simple model to show that effects of environmental harshness on life history evolution are incredibly diverse. In particular, small changes in basic but poorly understood variables - e.g., whether and how population density affects vital rates - can cause selection to favor very different life histories. Furthermore, I show that almost all life history theory used to justify HEFLH hypotheses is misapplied in the first place. The reason is that HEFLH hypotheses usually treat plastic responses to heterogeneous environmental conditions within a population, whereas the theory used to justify such hypotheses treat genetic responses to environmental changes across an entire population. Counter-intuitively, the predictions of the former do not generally apply to the latter: the optimal response to a harsh environment within a large heterogeneous environment is not necessarily the optimal strategy of a population uniformly inhabiting the same harsh environment. I discuss these theoretical results in light of the current state of empirical research.


2021 ◽  
Author(s):  
Christie Le Coeur ◽  
Nigel Gilles Yoccoz ◽  
Roberto Salguero-Gomez ◽  
Yngvild Vindenes

Demographic buffering and lability have both been identified as important adaptive strategies to optimise long-term fitness in variable environments. These strategies are not mutually exclusive, however we lack efficient methods to measure their relative importance. Here, we define a new index to measure the total lability for a given life history, and use stochastic simulations to disentangle relative fitness effects of buffering and lability. The simulations use 81 animal matrix population models, and different scenarios to explore how the strategies vary across life histories. The highest potential for adaptive demographic lability was found for short- to intermediately long-lived species, while demographic buffering was the main response in slow-living species. This study suggests that faster-living species are more responsive to environmental variability, both for positive or negative effects. Our methods and results provide a more comprehensive view of adaptations to variability, of high relevance to predict species responses to climate change.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charlotte Canteloup ◽  
Mabia B. Cera ◽  
Brendan J. Barrett ◽  
Erica van de Waal

AbstractSocial learning—learning from others—is the basis for behavioural traditions. Different social learning strategies (SLS), where individuals biasedly learn behaviours based on their content or who demonstrates them, may increase an individual’s fitness and generate behavioural traditions. While SLS have been mostly studied in isolation, their interaction and the interplay between individual and social learning is less understood. We performed a field-based open diffusion experiment in a wild primate. We provided two groups of vervet monkeys with a novel food, unshelled peanuts, and documented how three different peanut opening techniques spread within the groups. We analysed data using hierarchical Bayesian dynamic learning models that explore the integration of multiple SLS with individual learning. We (1) report evidence of social learning compared to strictly individual learning, (2) show that vervets preferentially socially learn the technique that yields the highest observed payoff and (3) also bias attention toward individuals of higher rank. This shows that behavioural preferences can arise when individuals integrate social information about the efficiency of a behaviour alongside cues related to the rank of a demonstrator. When these preferences converge to the same behaviour in a group, they may result in stable behavioural traditions.


Author(s):  
Annie Jonsson

AbstractMost animal species have a complex life cycle (CLC) with metamorphosis. It is thus of interest to examine possible benefits of such life histories. The prevailing view is that CLC represents an adaptation for genetic decoupling of juvenile and adult traits, thereby allowing life stages to respond independently to different selective forces. Here I propose an additional potential advantage of CLCs that is, decreased variance in population growth rate due to habitat separation of life stages. Habitat separation of pre- and post-metamorphic stages means that the stages will experience different regimes of environmental variability. This is in contrast to species with simple life cycles (SLC) whose life stages often occupy one and the same habitat. The correlation in the fluctuations of the vital rates of life stages is therefore likely to be weaker in complex than in simple life cycles. By a theoretical framework using an analytical approach, I have (1) derived the relative advantage, in terms of long-run growth rate, of CLC over SLC phenotypes for a broad spectrum of life histories, and (2) explored which life histories that benefit most by a CLC, that is avoid correlation in vital rates between life stages. The direction and magnitude of gain depended on life history type and fluctuating vital rate. One implication of our study is that species with CLCs should, on average, be more robust to increased environmental variability caused by global warming than species with SLCs.


2021 ◽  
pp. 025576142199115
Author(s):  
Tim Palmer ◽  
David Baker

This article explores the life histories of virtuoso classical music soloists with particular reference to conservatoire provision. Detailed life-history interviews were conducted with six virtuosi between May 2018 and January 2019. These participants were three singers, two cellists and a concert pianist. Resultant qualitative data were stored in an NVivo software database and understood through a process of analytic induction. Key findings spotlight the significance of Higher Education, a connection between broad creative and cultural interest and musical excellence, and a significant role for conservatoires in diversifying their training and easing transition into the career. The soloists also warned of dangers relating to controlling teachers, loss of autonomy and a need to convey their career realities to students.


Sign in / Sign up

Export Citation Format

Share Document