scholarly journals The ecology and evolution of synchronized reproduction in long-lived plants

Author(s):  
Mario B. Pesendorfer ◽  
Davide Ascoli ◽  
Michał Bogdziewicz ◽  
Andrew Hacket-Pain ◽  
Ian S. Pearse ◽  
...  

Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant–human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant–human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.

2017 ◽  
Vol 284 (1868) ◽  
pp. 20171666 ◽  
Author(s):  
Ian S. Pearse ◽  
Jalene M. LaMontagne ◽  
Walter D. Koenig

Mast seeding, or masting, is the highly variable and spatially synchronous production of seeds by a population of plants. The production of variable seed crops is typically correlated with weather, so it is of considerable interest whether global climate change has altered the variability of masting or the size of masting events. We compiled 1086 datasets of plant seed production spanning 1900–2014 and from around the world, and then analysed whether the coefficient of variation (CV) in seed set, a measure of masting, increased over time. Over this 115-year period, seed set became more variable for plants as a whole and for the particularly well-studied taxa of conifers and oaks. The increase in CV corresponded with a decrease in the long-term mean of seed set of plant species. Seed set CV increased to a greater degree in plant taxa with a tendency towards masting. Seed set is becoming more variable among years, especially for plant taxa whose masting events are known to affect animal populations. Such subtle change in reproduction can have wide-ranging effects on ecosystems because seed crops provide critical resources for a wide range of taxa and have cascading effects throughout food webs.


Author(s):  
Andrew Hacket-Pain ◽  
Michał Bogdziewicz

Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


2021 ◽  
Author(s):  
Andrew Hacket-Pain ◽  
Michał Bogdziewicz

Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation, and mast frequency. Data indicate that masting patterns, are changing, but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting.


Author(s):  
Walter D. Koenig

Although it has long been recognized that seed production by many forest trees varies greatly from year to year, masting (along with ‘mast fruiting’, ‘mast seeding’ and ‘masting behaviour’) as a concept referring to such variability is a relatively recent development. Here, I provide a brief history of masting research, highlighting some of the early contributions by foresters, zoologists and others that paved the way for the burgeoning number of studies currently being conducted by researchers around the world. Of particular current interest is work attempting to understand the proximate mechanisms, evolutionary drivers and community effects of this important ecological phenomenon as well as the ways that climate change may influence masting behaviour in the future. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants'.


Author(s):  
Ian S. Pearse ◽  
Andreas P. Wion ◽  
Angela D. Gonzalez ◽  
Mario B. Pesendorfer

Masting, the intermittent and synchronous production of large seed crops, can have profound consequences for plant populations and the food webs that are built on their seeds. For centuries, people have recorded mast crops because of their importance in managing wildlife populations. In the past 30 years, we have begun to recognize the importance of masting in conserving and managing many other aspects of the environment: promoting the regeneration of forests following fire or other disturbance, conserving rare plants, conscientiously developing the use of edible seeds as non-timber forest products, coping with the consequences of extinctions on seed dispersal, reducing the impacts of plant invasions with biological control, suppressing zoonotic diseases and preventing depredation of endemic fauna. We summarize current instances and future possibilities of a broad set of applications of masting. By exploring in detail several case studies, we develop new perspectives on how solutions to pressing conservation and land management problems may benefit by better understanding the dynamics of seed production. A lesson common to these examples is that masting can be used to time management, and often, to do this effectively, we need models that explicitly forecast masting and the dynamics of seed-eating animals into the near-term future. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


2017 ◽  
Vol 47 (7) ◽  
pp. 985-990 ◽  
Author(s):  
Natalie L. Cleavitt ◽  
Timothy J. Fahey

Mast seeding is the synchronous production of large seed crops in plant populations and for many tree species is known to be determined by the interaction between weather cues and internal plant resources. We use a 24-year record of seedfall for sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) across a northern hardwood forest landscape to quantify their masting patterns and explore the relationship between mast years, resources, and weather cues, particularly the difference between summer temperatures in the two years prior to the seedfall year (ΔT). We found clear evidence of masting in these species, and mast years were often coincident in the two species; masting was best predicted by ΔT or ΔT plus previous-year seedfall. We saw no evidence for correspondence of masting in these trees to precipitation cues. A soil calcium addition modified elevation effects on seed production. Clarification of the controls on mast seeding for these important tree species will aid in predicting such resources as mast for wildlife and maple sugar production in northern hardwood forests.


1975 ◽  
Vol 8 (5) ◽  
pp. 284-289

Sugar beet differs from most other farm seed crops, in that “varieties” are mixtures of hybrids from a blend of genotypes. Growing and processing are two equally important aspects of seed production. In this article, cultural and harvesting methods are described, and processing and marketing procedures are briefly outlined. The impact of EEC regulations affecting seeds is also considered.


Botany ◽  
2019 ◽  
Vol 97 (1) ◽  
pp. 23-33
Author(s):  
Paul Y. de la Bastide ◽  
Jonathon LeBlanc ◽  
Lisheng Kong ◽  
Terrie Finston ◽  
Emily M. May ◽  
...  

Lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson) is an important lumber species in Canada, and seed orchards are expected to meet the increased demand for seed. However, seed production has been consistently low in the Okanagan region orchards of British Columbia, Canada. To determine whether the fungal microbiome contributes to seed loss, histological and molecular approaches were used. Seed production was studied at seven Okanagan orchards, all outside the natural range of lodgepole pine, and at one near Prince George, within its natural range. Seed losses were highest in the Okanagan, compared with Prince George. The role of fungal colonizers in consuming seed during the last stages of maturation is described. Fungal hyphae were frequently observed at all locations in developing seed, particularly once storage substances accumulated. Fungi identified from host tissues using molecular and morphological techniques included Alternaria, Cladosporium, Fusarium, Penicillium, and Sydowia. The opportunistic foliar pathogen Sydowia polyspora, which is known to have a variable biotrophic status, was detected at most orchards within different host tissues (seeds, needles, and conelets), in association with pollen, and in the air column. Reduced seed viability observed in Okanagan orchards is most likely due to a combination of factors, including composition of the fungal microbiome.


1956 ◽  
Vol 88 (10) ◽  
pp. 599-608 ◽  
Author(s):  
L. A. Lyons

Natural and artificial reforestation, which basically depend on an abundance of sound seed, are adversely affected when insects destroy large numbers of cones, seeds, and cone-bearing shoots. Other factors, such as unfavourable weather, incomplete seed development, and damage by birds and mammals also reduce seed production, but they are rarely of such widespread importance as insects, whose damage often results in the failure of seed crops over large areas. Cone and seed insects sometimes restrict the natural regeneration of trees for a few years at a time, as, for example, in conifers on the Pacific coast (16), loblolly pines in Virginia (13), and oak in Michigan (5), but they become particularly important when the seeds they destroy are required for use in artificial reforestation. The future success of much reforestation, which is inclining more and more toward the use of seed obtained from trees cultivated especially for that purpose, may largely depend on a thorough understanding of cone and seed insects and their effect on seed production.


1996 ◽  
Vol 20 (2) ◽  
pp. 74-80 ◽  
Author(s):  
Michael G. Shelton ◽  
Robert F. Wittwer

Abstract Seed production of shortleaf pine (Pinus echinata Mill.) was monitored from 1965 to 1974 to determine the periodicity of seed crops in both woods-run stands and seed-production areas. One bumper and two good seed crops occurred during the 9-yr period. The two largest crops occurred in successive years, then seed production was low for 4 yr before another good crop occurred. Mean annual seed production ranged from 84,000/ac in the western Ouachitas to 167,000/ac in seed-production areas in the southern Ozarks. Certain stand-level variables significantly influenced seed production. Seed production was positively related to stand age and negatively related to pine and hardwood basal areas; although frequently significant, no consistent relationship occurred with stand elevation. Results indicate that shortleaf pine seed production will usually be adequate for natural regeneration within most of the study area. South. J. Appl. For. 20(2):74-80.


Sign in / Sign up

Export Citation Format

Share Document