scholarly journals Expression of unglycosylated mutated prion protein facilitates PrPSc formation in neuroblastoma cells infected with different prion strains

2000 ◽  
Vol 81 (10) ◽  
pp. 2555-2563 ◽  
Author(s):  
Carsten Korth ◽  
Kiyotoshi Kaneko ◽  
Stanley B. Prusiner

Prion replication involves conversion of the normal, host-encoded prion protein PrPC, which is a sialoglycoprotein bound to the plasma membrane by a glycophosphatidylinositol anchor, into a pathogenic isoform, PrPSc. In earlier studies, tunicamycin prevented glycosylation of PrPC in scrapie-infected mouse neuroblastoma (ScN2a) cells but it was still expressed on the cell surface and converted into PrPSc; mutation of PrPC at glycosylation consensus sites (T182A, T198A) produced low steady-state levels of PrP that were insufficient to propagate prions in transgenic mice. By mutating asparagines to glutamines at the consensus sites, we obtained expression of unglycosylated, epitope-tagged MHM2PrP(N180Q,N196Q), which was converted into PrPSc in ScN2a cells. Cultures of uninfected neuroblastoma (N2a) cells transiently expressing mutated PrP were exposed to brain homogenates prepared from mice infected with the RML, Me7 or 301V prion strains. In each case, mutated PrP was converted into PrPSc as judged by Western blotting. These findings raise the possibility that the N2a cell line can support replication of different strains of prions.

2020 ◽  
Vol 37 (6) ◽  
pp. 713-727
Author(s):  
Giulia Lunghi ◽  
Maria Fazzari ◽  
Erika Di Biase ◽  
Laura Mauri ◽  
Sandro Sonnino ◽  
...  

AbstractRecently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.


2018 ◽  
Vol 293 (21) ◽  
pp. 8020-8031 ◽  
Author(s):  
Anna D. Engelke ◽  
Anika Gonsberg ◽  
Simrika Thapa ◽  
Sebastian Jung ◽  
Sarah Ulbrich ◽  
...  

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc. Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC. Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC. Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258682
Author(s):  
Declan Williams ◽  
Mohadeseh Mehrabian ◽  
Hamza Arshad ◽  
Shehab Eid ◽  
Christopher Sackmann ◽  
...  

The prion protein (PrP) is best known for its ability to cause fatal neurodegenerative diseases in humans and animals. Here, we revisited its molecular environment in the brain using a well-developed affinity-capture mass spectrometry workflow that offers robust relative quantitation. The analysis confirmed many previously reported interactions. It also pointed toward a profound enrichment of Na,K-ATPases (NKAs) in proximity to cellular PrP (PrPC). Follow-on work validated the interaction, demonstrated partial co-localization of the ATP1A1 and PrPC, and revealed that cells exposed to cardiac glycoside (CG) inhibitors of NKAs exhibit correlated changes to the steady-state levels of both proteins. Moreover, the presence of PrPC was observed to promote the ion uptake activity of NKAs in a human co-culture paradigm of differentiated neurons and glia cells, and in mouse neuroblastoma cells. Consistent with this finding, changes in the expression of 5’-nucleotidase that manifest in wild-type cells in response to CG exposure can also be observed in untreated PrPC-deficient cells. Finally, the endoproteolytic cleavage of the glial fibrillary acidic protein, a hallmark of late-stage prion disease, can also be induced by CGs, raising the prospect that a loss of NKA activity may contribute to the pathobiology of prion diseases.


1993 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Karin Pfeifer ◽  
Michael Bachmann ◽  
Heinz C. Schröder ◽  
Jock Forrest ◽  
Werner E. G. Müller

2003 ◽  
Vol 1 (15) ◽  
pp. 2626-2629 ◽  
Author(s):  
Takehisa Oishi ◽  
Ken-ichi Hagiwara ◽  
Tomoya Kinumi ◽  
Yoshio Yamakawa ◽  
Masahiro Nishijima ◽  
...  

2015 ◽  
Vol 290 (39) ◽  
pp. 23631-23645 ◽  
Author(s):  
Mauricio Torres ◽  
Danilo B. Medinas ◽  
José Manuel Matamala ◽  
Ute Woehlbier ◽  
Víctor Hugo Cornejo ◽  
...  

1990 ◽  
Vol 10 (6) ◽  
pp. 3185-3193 ◽  
Author(s):  
D Morello ◽  
M J Fitzgerald ◽  
C Babinet ◽  
N Fausto

We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals.


2015 ◽  
Vol 89 (20) ◽  
pp. 10427-10441 ◽  
Author(s):  
Jenna Crowell ◽  
Andrew Hughson ◽  
Byron Caughey ◽  
Richard A. Bessen

ABSTRACTPhenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPScconformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH)Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPScpolypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPScdiffered for the CWD strains in a host-dependent manner. WST CWD produced PrPScamyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPScfrom WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPScproperties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent ofPrnpcan alter the PrPScconformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease.IMPORTANCEPrions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In the present study, we investigated prion diversity in two hosts species that express the same prion protein gene. While prior reports have demonstrated that prion strain properties are stable upon infection of the same host species and prion protein genotype, our findings indicate that certain prion strains can undergo dramatic changes in biological properties that are not dependent on the prion protein. Therefore, host factors independent of the prion protein can affect prion diversity. Understanding how host pathways can modify prion disease phenotypes may provide clues on how to alter prion formation and lead to treatments for prion, and other, human neurodegenerative diseases of protein misfolding.


1995 ◽  
Vol 268 (1) ◽  
pp. G11-G17 ◽  
Author(s):  
Y. Liu ◽  
T. Ganguly ◽  
J. F. Hyde ◽  
M. Vore

We have shown that prolactin (Prl) increases the transhepatic transport of taurocholate (TC) in postpartum rats and following treatment of ovariectomized (Ovx) rats with ovine Prl (oPrl). The present studies were designed to determine if treatment of Ovx rats with oPrl (100, 300, or 600 micrograms/day, 7 days iv) 1) increases Na(+)-TC cotransport in basolateral plasma membrane vesicles (bLPM), 2) induces a corresponding increase in the steady-state levels of Na(+)-TC cotransport polypeptide (Ntcp mRNA), and 3) if the oPrl-mediated increase in Na(+)-TC cotransport activity is blocked by cycloheximide, an inhibitor of protein synthesis. oPrl (300 micrograms/day) induced a twofold increase in the maximal velocity for Na(+)-TC cotransport in both hepatocytes and bLPM vesicles with little change in the Michaelis constant. Infusion of oPrl at a dose of 100, 300, or 600 micrograms/day increased steady-state Ntcp mRNA four-, ten-, and twofold, respectively. Finally, cycloheximide blocked the oPrl-mediated increase in Na(+)-TC cotransport but did not affect basal activity. These data support the hypothesis that an increase in Ntcp mRNA followed by increased synthesis and incorporation of Ntcp in the plasma membrane is responsible for the oPrl-mediated increase in Na(+)-TC cotransport in the basolateral plasma membrane domain of the hepatocyte.


2004 ◽  
Vol 78 (12) ◽  
pp. 6243-6251 ◽  
Author(s):  
Thierry Baron ◽  
Carole Crozet ◽  
Anne-Gaëlle Biacabe ◽  
Sandrine Philippe ◽  
Jérémie Verchere ◽  
...  

ABSTRACT The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrPres) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrPres detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrPres glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.


Sign in / Sign up

Export Citation Format

Share Document