scholarly journals RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus

2001 ◽  
Vol 82 (10) ◽  
pp. 2569-2578 ◽  
Author(s):  
N. O. Kalinina ◽  
D. A. Rakitina ◽  
N. E. Yelina ◽  
A. A. Zamyatnin ◽  
T. A. Stroganova ◽  
...  

The 63 kDa ‘63K’ movement protein encoded by the triple gene block of poa semilatent virus (PSLV) comprises the C-terminal NTPase/helicase domain and the N-terminal extension domain, which contains two positively charged sequence motifs, A and B. In this study, the in vitro RNA-binding properties of PSLV 63K and its mutants were analysed. Membrane-immobilized 63K and N-63K (isolated N-terminal extension domain) bound RNA at high NaCl concentrations. In contrast, C-63K (isolated NTPase/helicase domain) was able to bind RNA only at NaCl concentrations of up to 50 mM. In gel-shift assays, C-63K bound RNA to form complexes that were unable to enter an agarose gel, whereas complexes formed by N-63K could enter the gel. Full-length 63K formed both types of complexes. Visualization of the RNA–protein complexes formed by 63K, N-63K and C-63K by atomic force microscopy demonstrated that each complex had a different shape. Collectively, these data indicate that 63K has two distinct RNA-binding activities associated with the NTPase/helicase domain and the N-terminal extension domain. Mutations in either of the positively charged sequence motifs A and B had little effect on the RNA binding of the N-terminal extension domain, whereas mutations in both motifs together inhibited RNA binding. Hybrid viruses with mutations in motifs A and B were able to infect inoculated leaves of Nicotiana benthamiana plants, but were unable to move systemically to uninoculated leaves, suggesting that the RNA-binding activity of the N-terminal extension domain of PSLV 63K is associated with virus long-distance movement.


2009 ◽  
Vol 90 (12) ◽  
pp. 3022-3032 ◽  
Author(s):  
Valentin V. Makarov ◽  
Ekaterina N. Rybakova ◽  
Alexander V. Efimov ◽  
Eugene N. Dobrov ◽  
Marina V. Serebryakova ◽  
...  

Three ‘triple gene block’ proteins known as TGBp1, TGBp2 and TGBp3 are required for cell-to-cell movement of plant viruses belonging to a number of genera including Hordeivirus. Hordeiviral TGBp1 interacts with viral genomic RNAs to form ribonucleoprotein (RNP) complexes competent for translocation between cells through plasmodesmata and over long distances via the phloem. Binding of hordeivirus TGBp1 to RNA involves two protein regions, the C-terminal NTPase/helicase domain and the N-terminal extension region. This study demonstrated that the extension region of hordeivirus TGBp1 consists of two structurally and functionally distinct domains called the N-terminal domain (NTD) and the internal domain (ID). In agreement with secondary structure predictions, analysis of circular dichroism spectra of the isolated NTD and ID demonstrated that the NTD represents a natively unfolded protein domain, whereas the ID has a pronounced secondary structure. Both the NTD and ID were able to bind ssRNA non-specifically. However, whilst the NTD interacted with ssRNA non-cooperatively, the ID bound ssRNA in a cooperative manner. Additionally, both domains bound dsRNA. The NTD and ID formed low-molecular-mass oligomers, whereas the ID also gave rise to high-molecular-mass complexes. The isolated ID was able to interact with both the NTD and the C-terminal NTPase/helicase domain in solution. These data demonstrate that the hordeivirus TGBp1 has three RNA-binding domains and that interaction between these structural units can provide a basis for remodelling of viral RNP complexes at different steps of cell-to-cell and long-distance transport of virus infection.



2009 ◽  
Vol 6 (1) ◽  
pp. 50 ◽  
Author(s):  
Hsiu-Ting Hsu ◽  
Yang-Hao Tseng ◽  
Yuan-Lin Chou ◽  
Shiaw-Hwa Su ◽  
Yau-Heiu Hsu ◽  
...  


2007 ◽  
Vol 88 (6) ◽  
pp. 1643-1655 ◽  
Author(s):  
Jeanmarie Verchot-Lubicz ◽  
Chang-Ming Ye ◽  
Devinka Bamunusinghe

Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, R gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5′ non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport. The 3′ NTR regulates both plus- and minus-strand RNA synthesis. How the triple gene-block proteins interact for virus movement is still elusive. As the potato virus X (PVX) TGBp1 protein gates plasmodesmata, regulates virus translation and is a suppressor of RNA silencing, further research is needed to determine how these properties contribute to propelling virus through the plasmodesmata. Specifically, TGBp1 suppressor activity is required for virus movement, but how the silencing machinery relates to plasmodesmata is not known. The TGBp2 and TGBp3 proteins are endoplasmic reticulum (ER)-associated proteins required for virus movement. TGBp2 associates with ER-derived vesicles that traffic along the actin network. Future research will determine whether the virus-induced vesicles are cytopathic structures regulating events along the ER or are vehicles carrying virus to the plasmodesmata for transfer into neighbouring cells. Efforts to assemble virions in vitro identified a single-tailed particle (STP) comprising RNA, coat protein (CP) and TGBp1. It has been proposed that TGBp1 aids in transport of virions or STP between cells and ensures translation of RNA in the receiving cells. PVX is also a tool for studying Avr–R gene interactions and gene silencing in plants. The PVX CP is the elicitor for the Rx gene. Recent reports of the PVX CP reveal how CP interacts with the Rx gene product.



2018 ◽  
Vol 19 (12) ◽  
pp. 3747
Author(s):  
Matthaios Mathioudakis ◽  
Souheyla Khechmar ◽  
Carolyn Owen ◽  
Vicente Medina ◽  
Karima Ben Mansour ◽  
...  

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.



Biochimie ◽  
2020 ◽  
Vol 170 ◽  
pp. 118-127 ◽  
Author(s):  
Eugeny A. Tolstyko ◽  
Alexander A. Lezzhov ◽  
Anna V. Pankratenko ◽  
Marina V. Serebryakova ◽  
Andrey G. Solovyev ◽  
...  


2008 ◽  
Vol 82 (10) ◽  
pp. 4991-5006 ◽  
Author(s):  
Hyoun-Sub Lim ◽  
Jennifer N. Bragg ◽  
Uma Ganesan ◽  
Diane M. Lawrence ◽  
Jialin Yu ◽  
...  

ABSTRACT Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement.



2006 ◽  
Vol 87 (10) ◽  
pp. 3087-3095 ◽  
Author(s):  
Anna D. Leshchiner ◽  
Andrey G. Solovyev ◽  
Sergey Yu. Morozov ◽  
Natalia O. Kalinina

The TGBp1 protein, encoded in the genomes of a number of plant virus genera as the first gene of the ‘triple gene block’, possesses an NTPase/helicase domain characterized by seven conserved sequence motifs. It has been shown that the TGBp1 NTPase/helicase domain exhibits NTPase, RNA helicase and RNA-binding activities. In this paper, we have analysed a series of deletion and point mutants in the TGBp1 proteins encoded by Potato virus X (PVX, genus Potexvirus) and Poa semilatent virus (PSLV, genus Hordeivirus) to map functional regions responsible for their biochemical activities in vitro. It was found that, in both PVX and PSLV, the N-terminal part of the TGBp1 NTPase/helicase domain comprising conserved motifs I, Ia and II was sufficient for ATP hydrolysis, RNA binding and homologous protein–protein interactions. Point mutations in a single conserved basic amino acid residue upstream of motif I had little effect on the activities of C-terminally truncated mutants of both TGBp1 proteins. However, when introduced into the full-length NTPase/helicase domains, these mutations caused a substantial decrease in the ATPase activity of the protein, suggesting that the conserved basic amino acid residue upstream of motif I was required to maintain a reaction-competent conformation of the TGBp1 ATPase active site.





2009 ◽  
Vol 83 (22) ◽  
pp. 11635-11644 ◽  
Author(s):  
Zhao Han ◽  
Dinesh Verma ◽  
Chelsey Hilscher ◽  
Dirk P. Dittmer ◽  
Sankar Swaminathan

ABSTRACT Epstein-Barr virus (EBV) SM protein is an essential nuclear shuttling protein expressed by EBV early during the lytic phase of replication. SM acts to increase EBV lytic gene expression by binding EBV mRNAs and enhancing accumulation of the majority of EBV lytic cycle mRNAs. SM increases target mRNA stability and nuclear export, in addition to modulating RNA splicing. SM and its homologs in other herpesvirus have been hypothesized to function in part by binding viral RNAs and recruiting cellular export factors. Although activation of gene expression by SM is gene specific, it is unknown whether SM binds to mRNA in a specific manner or whether its RNA binding is target independent. SM-mRNA complexes were isolated from EBV-infected B-lymphocyte cell lines induced to permit lytic EBV replication, and a quantitative measurement of mRNAs corresponding to all known EBV open reading frames was performed by real-time quantitative reverse transcription-PCR. The results showed that although SM has broad RNA binding properties, there is a clear hierarchy of affinities among EBV mRNAs with respect to SM complex formation. In vitro binding assays with two of the most highly SM-associated transcripts suggested that SM binds preferentially to specific sequences or structures present in noncoding regions of some EBV mRNAs. Furthermore, the presence of these sequences conferred responsiveness to SM. These data are consistent with a mechanism of action similar to that of hnRNPs, which exert sequence-specific effects on gene expression despite having multiple degenerate consensus binding sites common to a large number of RNAs.



2012 ◽  
Vol 393 (10) ◽  
pp. 1131-1140 ◽  
Author(s):  
Denis Kudlinzki ◽  
Andreas Schmitt ◽  
Henning Christian ◽  
Ralf Ficner

Abstract Splicing of pre-mRNA requires the activity of at least eight different DEAD/H-box proteins that are involved in distinct steps of the splicing process. These proteins are driving the spliceosomal machinery by ATP-dependent unwinding of dsRNA and/or disrupting protein-RNA complexes. The spliceosomal DEAH-box proteins Prp2, Prp16, Prp22 and Prp43 share homologous C-terminal domains (CTD). We have determined the crystal structure of the CTD of human Prp22 by means of MAD. The fold of the human Prp22-CTD closely resembles that of the yeast Prp43-CTD. The similarity of these helicase-associated CTDs to the winged-helix and ratchet domains of the DNA helicase Hel308 suggests an analogous function in dsRNA binding and unwinding. Here, we also demonstrate that the CTD has a significant impact on the ATPase activity of yPrp22 in vitro. Homology modeling of the CTDs of hPrp2, hPrp16 and hPrp43 suggests that the CTDs of spliceosomal helicases contain conserved positively charged patches on their surfaces representing a common RNA-binding surface as well as divergent regions most likely mediating specific interactions with different proteins of the spliceosome.



Sign in / Sign up

Export Citation Format

Share Document