scholarly journals Stimulation of exoprotein secretion by choline and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activities of dolichol phosphate mannose synthase

1990 ◽  
Vol 136 (7) ◽  
pp. 1293-1298 ◽  
Author(s):  
J. Kruszewska ◽  
G. Palamarczyk ◽  
C. P. Kubicek
1972 ◽  
Vol 18 (10) ◽  
pp. 1543-1550 ◽  
Author(s):  
Robert G. Brown

A strain of Penicillium lilacinum, isolated from soil, produced pustulanase, β-(1 → 3)-glucanase, (EC. 3.2.1.6) and cellulase (EC.3.2.1.4) when cultivated on a medium containing pustulan as the sole source of carbon. If pustulan was replaced by ketopustulan, the production of pustulanase was stimulated about 10-fold although the amount of stimulation was dependent on the degree of oxidation of pustulan. β-(1 → 3)-Glucanase production was stimulated slightly by ketopustulan; however, the degree of oxidation did not affect significantly the yield of this enzyme. Cellulase production was either unaffected by the oxidized polymer, or at higher degrees of oxidation, decreased. Tween 80 stimulated the production of the three enzymes in media containing ketopustulan with a low degree of oxidation but was inhibitory to pustulanase and cellulase production in media containing ketopustulan with a high degree of oxidation. A combination of gel filtration and isoelectric focusing revealed that each enzyme activity was attributable to at least two proteins.


1970 ◽  
Vol 23 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Isidore Gomes ◽  
Mohammad Shaheen ◽  
Sabita Rezwana Rahman ◽  
Donald James Gomes

Lignocellulose-degrading organisms have been used for the conversion of lignocellulosic materials into soluble sugars or solvents in several biotechnological and industrial applications. Complete degradation of complex highly structured lignocellosics requires a concerted action of a wide array hydrolytic enzymes. In this study, two newly isolated fungi, Trichoderma reesei and T. viride, were examined for their ability to produce cellulolytic, xylanolytic and pectinolytic enzymes in submerged and solid-state fermentations. The fungi produced appreciable amounts of the enzymes when grown on potentially low cost lignocellulosic agricultural residues like wheat bran, sugar cane bagasse and corncobs. T. viride seems to be superior to T. reesei with respect to enzyme productions both in submerged and solid-state cultivations. There was a distinct influence of culture methods on the production of the enzymes by the fungi. The enzyme productions were higher in solid-state fermentations than in submerged fermentations. However, taking into consideration of enzyme yields per gram substrate, it was found that the yields were many-fold higher in submerged cultures than in solid-state fermentations. The recovery of the enzymes from fermented slurries in solidstate fermentations was enhanced by using non-ionic surfactant Tween 80 as leaching agent. The enzymes produced by the fungi displayed optimum activities at pH range between 4.5 and 5.5, and at temperatures between 50 and 55°C. The fungi merit further attention as potential sources of industrial enzymes, as they exhibited some excellent properties including the ability to synthesize a wide array of hydrolytic enzymes while grown on cheap and readily available lignocellulosic residues. Keywords: Lignocellulosics, cellulase, xylanase, pectinase, Trichoderma reesei, Trichoderma viride, submerged culture, solid-state fermentationDOI: http://dx.doi.org/10.3329/bjm.v23i2.882 Bangladesh J Microbiol, Volume 23, Number 2, December 2006, pp 149-155


2009 ◽  
Vol 8 (3) ◽  
pp. 410-420 ◽  
Author(s):  
Monika Schmoll ◽  
André Schuster ◽  
Roberto do Nascimento Silva ◽  
Christian P. Kubicek

ABSTRACT Although the enzymes enabling Hypocrea jecorina (anamorph Trichoderma reesei) to degrade the insoluble substrate cellulose have been investigated in some detail, little is still known about the mechanism by which cellulose signals its presence to the fungus. In order to investigate the possible role of a G-protein/cyclic AMP signaling pathway, the gene encoding GNA3, which belongs to the adenylate cyclase-activating class III of G-alpha subunits, was cloned. gna3 is clustered in tandem with the mitogen-activated protein kinase gene tmk3 and the glycogen phosphorylase gene gph1. The gna3 transcript is upregulated in the presence of light and is almost absent in the dark. A strain bearing a constitutively activated version of GNA3 (gna3QL) exhibits strongly increased cellulase transcription in the presence of the inducer cellulose and in the presence of light, whereas a gna3 antisense strain showed delayed cellulase transcription under this condition. However, the gna3QL mutant strain was unable to form cellulases in the absence of cellulose. The necessity of light for stimulation of cellulase transcription by GNA3 could not be overcome in a mutant which expressed gna3 under control of the constitutive gpd1 promoter also in darkness. We conclude that the previously reported stimulation of cellulase gene transcription by light, but not the direct transmission of the cellulose signal, involves the function and activation of GNA3. The upregulation of gna3 by light is influenced by the light modulator ENVOY, but GNA3 itself has no effect on transcription of the light regulator genes blr1, blr2, and env1. Our data for the first time imply an involvement of a G-alpha subunit in a light-dependent signaling event in fungi.


2012 ◽  
Vol 02 (03) ◽  
pp. 45-52 ◽  
Author(s):  
Ewelina Nowak ◽  
Gohar Khachatryan ◽  
Agnieszka Polit ◽  
Lidia Krzeminska-Fiedorowicz ◽  
Marta Dziedzicka-Wasylewska ◽  
...  

1994 ◽  
Vol 41 (3) ◽  
pp. 331-337 ◽  
Author(s):  
J Kruszewska ◽  
C P Kubicek ◽  
G Palamarczyk

It has been postulated that exoprotein secretion in Trichoderma is related to their O-glycosylation. In the present paper the involvement of phosphodolichol in this process is described and the key role of mannosylphosphodolichol (MPD) synthase in protein O-mannosylation is discussed. The effect of water soluble phospholipid precursors such as choline and Tween 80, known also to increase secretion of cellulases when added to the medium, on MPD-synthase activity is presented. This effect is positive in the Trichoderma reesei QM 9414 (a low producing strain) but has no influence on the enzyme activity from the RUT C-30 strain selected to overproduce secretion of exoproteins and known to contain an increased cellular amount of endoplasmic reticulum. The positive effect of addition of choline and Tween to the medium on the level of dolichol kinase activity is also demonstrated. The influence of cultivation temperature on the activity of the various enzymes involved in dolichol-dependent protein glycosylation i.e. MPD-synthase, dolichyl kinase and MPD/Protein mannosyl transferase was tested. For all enzymes cultivation at 35 degrees C led to the elevated activity, which was most striking for dolichol kinase, whereas for MPD-synthase and MPD/Protein mannosyl transferase the difference was only apparent in the assay when endogenous phosphodolichol was used as a substrate. Furthermore, lipid extract from the membranes cultivated at elevated temperature, when added to the enzyme obtained from Trichoderma grown at 25 degrees C, enhanced the dolichol kinase activity measured in the absence of exogenous dolichol.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Sign in / Sign up

Export Citation Format

Share Document