scholarly journals Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae

2006 ◽  
Vol 56 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Five strains belonging to the family Flavobacteriaceae were isolated from marine-sediment samples collected in Sagami and Tokyo bays on the Pacific coastline of Japan. The five isolates formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The most closely related species with a validly published name was Cellulophaga lytica. The five isolates were rod-shaped, Gram-negative, aerobic, catalase- and oxidase-positive, flexirubin-negative and yellow-pigmented. The dominant fatty acids were branched or hydroxy acids, i.e. i-C15 : 0, i-C15 : 1 and i-C17 : 0 3-OH. These strains degraded gelatin, casein, DNA and Tween 80. The G+C content of their DNAs ranged between 33 and 39 mol%. Although analysis of the 16S rRNA gene sequence similarity divided these strains into two subgroups with a 2·3 % sequence difference, the results of DNA–DNA hybridization indicated the grouping of these strains into three distinct species. On the basis of phenotypic and genotypic analyses, the novel genus Krokinobacter is proposed, with Krokinobacter genikus sp. nov., containing three of the strains, as the type species. The type strain is Cos-13T (=NBRC 100811T=CIP 108744T). The names Krokinobacter eikastus sp. nov. (type strain PMA-26T=NBRC 100814T=CIP 108743T) and Krokinobacter diaphorus sp. nov. (type strain MSKK-32T=NBRC 100817T=CIP 108745T) are proposed for the other two isolates.

2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4823-4829 ◽  
Author(s):  
Tobias Eisenberg ◽  
Stefanie P. Glaeser ◽  
Christa Ewers ◽  
Torsten Semmler ◽  
Werner Nicklas ◽  
...  

A pleomorphic, Gram-negative, rod-shaped, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile bacterium was isolated in 1979 from the heart of a spinifex hopping mouse (Notomys alexis Thomas, 1922) with septicaemia and stored as Streptobacillus moniliformis in the strain collection of the Animal Health Laboratory, South Perth, Western Australia (AHL 370-1), as well as under CCUG 12425. On the basis of 16S rRNA gene sequence analyses, the strain was assigned to the genus Streptobacillus, with 99.4 % sequence similarity to the type strain of Streptobacillus moniliformis, 95.6 % sequence similarity to the type strain of Streptobacillus hongkongensis and 99.0 % sequence similarity to the type strain of Streptobacillus felis. The clear differentiation of strain AHL 370-1T from Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis was also supported by rpoB, groEL and recA nucleotide and amino acid sequence analysis. Average nucleotide identity was 87.16 % between strain AHL 370-1T and Streptobacillus moniliformis DSM 12112T. Physiological data confirmed the allocation of strain AHL 370-1T to the family Leptotrichiaceae, considering the very similar profiles of enzyme activities and fatty acids compared to closely related species. Within the genus Streptobacillus, isolate AHL 370-1T could also be separated unambiguously from the type strains of Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis by MALDI-TOF mass spectrometry. Two further strains (KWG2 and KWG24) isolated from asymptomatic black rats in Japan were highly similar to AHL 370-1T. On the basis of these data, we propose the novel species Streptobacillus notomytis sp. nov., with the type strain AHL 370-1T ( = CCUG 12425T = DSM 100026T = CCM 8593T = EF 12425T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3248-3255 ◽  
Author(s):  
Ashish Verma ◽  
Poonam Mual ◽  
Shanmugam Mayilraj ◽  
Srinivasan Krishnamurthi

Two novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).


2022 ◽  
Author(s):  
Senlie Octaviana ◽  
Stefan Lorenczyk ◽  
Frederike Ackert ◽  
Joachim Wink

Abstract Four strains isolated, PWU4T, PWU20T, PWU5T and PWU37T were from both of soil in Germany, India and a faces sheep collected in Crete Island, respectively. Cells were Gram-negative, strictly aerobic, rod shaped, grew optimally between 28oC and 34oC, pH between 7.0 and 8.0 without the addition of NaCl. Catalase and oxidase-negative and grew on most mono- and disaccharides, a few polysaccharides and organic acid. The predominant menaquinone was MK-7. Major fatty acid was c16:1 ω7c (PWU4T and PWU20T) and c16:1 ω5c (PWU5T and PWU37T). The DNA G+C content of them were 50.2 mol %; 51.6 mol %; 39.8 mol % and 53.8 mol %, respectively. The 16S rRNA gene sequence analysis revealed that the closest relatives of them are less than 93.8% compared to Ohtaekwangia koreensis 3B-2T and Ohtaekwangia kribbensis 10AOT. It classified in two groups, where PWU4T, PWU20T shared 93.0% and PWU5T, PWU37T shared 97.5% sequence similarity. However, in both groups represent different species on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We proposed that the four strains represent four novel species of two new genera in the family Cytophagaceae. The type species of the novel genus Cryseosolum are Cryseosolum histdinii gen. nov., sp. nov. strain PWU4T (=DSM 111594T=NCCB 100798T), Cryseosolum indiensis sp. nov. strain PWU20T (=DSM 111597T=NCCB 100800T). The type species of the novel genus Reichenbachia are Reichenbachia cretensis gen. nov., sp. nov. strain PWU5T (=DSM 111596T=NCCB 100799T), Reichenbachia soli sp. nov. strain PWU37T (=DSM 111595T=NCCB 100801T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2810-2816 ◽  
Author(s):  
Fengqin Sun ◽  
Yaping Du ◽  
Xiupian Liu ◽  
Qiliang Lai ◽  
Zongze Shao

A bacterial strain, YYQ-30T, isolated from a mixed water–sand–sediment sample collected from a terrestrial spring located in Dunhuang, China, was characterized with respect to its morphology, physiology and taxonomy. Cells of the strain were Gram-stain-negative, aerobic, oxidase- and catalase-positive, non-flagellated, oval to rod-shaped (0.5–1.0 μm wide and 1.1–6.6 μm long) and divided by binary fission. Growth was observed in the presence of 0–10.0 % (w/v) NaCl with optimal growth at 0–3.0 %, at pH 6.0–9.0 (optimum pH 7.0–8.5) and at 10–45 °C (optimum 30–37 °C). The isolate could reduce nitrate to nitrite and hydrolyse aesculin and gelatin (weakly), but was unable to degrade Tween 80 or starch. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YYQ-30T belongs to the family Rhodobacteraceae and forms a distinct lineage with the type strain of Albimonas donghaensis and forms a branch within a cluster constituted by the type strains of species of the genera Albimonas, Rhodovulum, Albidovulum, Haematobacter and Tropicimonas; levels of 16S rRNA gene sequence similarity between strain YYQ-30T and members of related genera ranged from 94.1 to 89.7  %. Strain YYQ-30T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 70.0  %), C18 : 0 (9.5  %), summed feature 2 (one or more of C14  :  0 3-OH, iso-C16  :  1 I and C12  :  0 aldehyde; 6.9  %) and 11-methyl C18  :  1ω7c (6.0  %) as the principal fatty acids. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids, two unidentified aminolipids and five unknown lipids. The pufLM gene was detected. The G+C content of the genomic DNA was 71.7 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained in this study, strain YYQ-30T is considered to represent a novel species in a new genus within the family Rhodobacteraceae, for which the name Halovulum dunhuangense gen. nov., sp. nov. is proposed. The type strain of Halovulum dunhuangense is YYQ-30T ( = LMG 27418T = MCCC 1A06483T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2066-2070 ◽  
Author(s):  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen ◽  
P. D. Rekha ◽  
Kerstin Fallschissel ◽  
...  

The taxonomic position of a bright orange-pigmented bacterial strain, designated CC-GZM-130T, isolated from a water sample of the Guan-zing-ling hot spring, southern Taiwan, was studied. The strain was able to grow on nutrient agar at 25–40 °C and in the presence of 1–3 % (w/v) NaCl. Comparative analyses of the 16S rRNA gene sequence showed that the isolate was grouped in the vicinity of the genus Aquiflexum with the highest sequence similarity of 92.1 % to the type strain of Aquiflexum balticum, followed by sequence similarities of 92.0, 91.6 and 91.5 % to the type strains of Algoriphagus ornithinivorans, Algoriphagus hitonicola and Belliella baltica, respectively. The polyamine pattern showed that the major compound was sym-homospermidine. The quinone system was menaquinone MK-7. The polar lipid profile was composed predominantly of phosphatidylethanolamine, three polar lipids and one aminolipid. Minor amounts of other lipids were also detectable. The main characteristics of the fatty acid profiles of strain CC-GZM-130T, B. baltica and Aquiflexum balticum were similar, with iso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH as the major fatty acids, but some qualitative and quantitative differences were observed. The DNA G+C content of the novel strain was 53.2 mol%. The isolate clearly differed genotypically and phenotypically from representatives of the most closely related genera. On the basis of these differences, a novel species in a new genus, Fontibacter flavus gen. nov., sp. nov., is proposed with CC-GZM-130T (=CCUG 57694T=CCM 7650T) as the type strain of the type species.


2007 ◽  
Vol 57 (4) ◽  
pp. 837-843 ◽  
Author(s):  
Dalal Asker ◽  
Teruhiko Beppu ◽  
Kenji Ueda

A novel marine, Gram-negative, yellow-pigmented, rod-shaped, strictly aerobic, gliding and oxidase- and catalase-positive bacterium (strain TD-ZE3T) was isolated from a seawater sample collected off the Pacific coastline of Japan near Enoshima Island (Fujisawa, Kanagawa). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TD-ZE3T belonged to a distinct lineage in the family Flavobacteriaceae, with 90.5 % sequence similarity with the nearest species Robiginitalea biformata. Strain TD-ZE3T could be distinguished from other members of the family Flavobacteriaceae by a number of chemotaxonomic and phenotypic characteristics. The DNA G+C content was 46.5 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1 ω9c and menaquinone-6 was the only respiratory quinone. Zeaxanthin was the major carotenoid pigment produced; flexirubin-type pigments were not produced. Strain TD-ZE3T degraded gelatin, starch and Tween 80. Based on its unique phenotypic, genotypic and phylogenetic features, strain TD-ZE3T represents a novel taxon, for which the name Zeaxanthinibacter enoshimensis gen. nov., sp. nov. is proposed. The type strain is TD-ZE3T (=NBRC 101990T=CCUG 53613T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


Sign in / Sign up

Export Citation Format

Share Document