scholarly journals Fontibacter flavus gen. nov., sp. nov., a member of the family ‘Cyclobacteriaceae’, isolated from a hot spring

2010 ◽  
Vol 60 (9) ◽  
pp. 2066-2070 ◽  
Author(s):  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen ◽  
P. D. Rekha ◽  
Kerstin Fallschissel ◽  
...  

The taxonomic position of a bright orange-pigmented bacterial strain, designated CC-GZM-130T, isolated from a water sample of the Guan-zing-ling hot spring, southern Taiwan, was studied. The strain was able to grow on nutrient agar at 25–40 °C and in the presence of 1–3 % (w/v) NaCl. Comparative analyses of the 16S rRNA gene sequence showed that the isolate was grouped in the vicinity of the genus Aquiflexum with the highest sequence similarity of 92.1 % to the type strain of Aquiflexum balticum, followed by sequence similarities of 92.0, 91.6 and 91.5 % to the type strains of Algoriphagus ornithinivorans, Algoriphagus hitonicola and Belliella baltica, respectively. The polyamine pattern showed that the major compound was sym-homospermidine. The quinone system was menaquinone MK-7. The polar lipid profile was composed predominantly of phosphatidylethanolamine, three polar lipids and one aminolipid. Minor amounts of other lipids were also detectable. The main characteristics of the fatty acid profiles of strain CC-GZM-130T, B. baltica and Aquiflexum balticum were similar, with iso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH as the major fatty acids, but some qualitative and quantitative differences were observed. The DNA G+C content of the novel strain was 53.2 mol%. The isolate clearly differed genotypically and phenotypically from representatives of the most closely related genera. On the basis of these differences, a novel species in a new genus, Fontibacter flavus gen. nov., sp. nov., is proposed with CC-GZM-130T (=CCUG 57694T=CCM 7650T) as the type strain of the type species.

2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1943-1947 ◽  
Author(s):  
Marc René Carlsohn ◽  
Ingrid Groth ◽  
Cathrin Spröer ◽  
Barbara Schütze ◽  
Hans-Peter Saluz ◽  
...  

Three actinomycetes (strains HKI 0478T, HKI 0479 and HKI 0480) isolated from the surfaces of rocks in the Feengrotten medieval alum slate mine (Thuringia, Germany) were examined in a polyphasic taxonomic study. The following morphological and chemotaxonomic features supported their classification as members of the genus Kribbella: the presence of ll-diaminopimelic acid in the cell-wall peptidoglycan; glucose together with minor amounts of mannose and ribose as the whole-cell sugars; polar lipids comprising phosphatidylcholine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and unknown phospho- and glycolipids; fatty acid profiles characterized by the predominance of anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 9-methyl; and the presence of MK-9(H4) as the main menaquinone. The isolates had almost identical 16S rRNA gene sequences (99.9–100 %) and were most closely related to the type strains of Kribbella jejuensis (98.9 % sequence similarity), Kribbella swartbergensis and Kribbella solani (both 98.8 %). A wide range of genotypic and phenotypic markers as well as the low levels of DNA–DNA relatedness between strain HKI 0478T and the type strains of K. jejuensis (41.3 %), K. swartbergensis (18.6 %) and K. solani (14.2 %) distinguished the novel strains from their closest phylogenetic neighbours. On the basis of these results, strain HKI 0478T represents a novel member of the genus Kribbella, for which the name Kribbella aluminosa sp. nov. is proposed. The type strain is HKI 0478T (=DSM 18824T =JCM 14599T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1528-1535 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A Gram-staining-negative, strictly aerobic, non-motile, yellow-pigmented bacterium, designated strain M091T, was isolated from seawater at Damupo beach in Pohang, Republic of Korea, and investigated using a polyphasic taxonomic approach. The novel strain grew optimally at 25 °C, pH 7.0–8.0, and in the presence of 3 % (w/v) NaCl. In a phylogenetic analysis based on 16S rRNA gene sequences, strain M091T formed a lineage within the family Flavobacteriaceae that was distinct from the most closely related genera of Flaviramulus (95.1 % sequence similarity), Algibacter (94.9–93.9 %), Mariniflexile (94.8–94.2 %), Winogradskyella (94.8–93.2 %), Lacinutrix (94.7–93.8 %) and Tamlana (94.7–92.9 %). The polar lipid profile of the novel strain comprised phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and seven unidentified lipids. The predominant cellular fatty acids were iso-C15 : 0 (20.5 %), iso-C17 : 0 3-OH (15.4 %), iso-C15 : 0 3-OH (12.4 %), C15 : 0 (10.9 %) and iso-C15 : 1 G (9.9 %). The genomic DNA G+C content of strain M091T was 34.4 mol% and the major respiratory quinone was MK-6. Based on phenotypic and genotypic data, strain M091T represents a new genus and novel species in the family Flavobacteriaceae , for which the name Postechiella marina gen. nov., sp. nov. is proposed. The type strain of the type species is M091T ( = KCTC 23537T = JCM 17630T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4823-4829 ◽  
Author(s):  
Tobias Eisenberg ◽  
Stefanie P. Glaeser ◽  
Christa Ewers ◽  
Torsten Semmler ◽  
Werner Nicklas ◽  
...  

A pleomorphic, Gram-negative, rod-shaped, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile bacterium was isolated in 1979 from the heart of a spinifex hopping mouse (Notomys alexis Thomas, 1922) with septicaemia and stored as Streptobacillus moniliformis in the strain collection of the Animal Health Laboratory, South Perth, Western Australia (AHL 370-1), as well as under CCUG 12425. On the basis of 16S rRNA gene sequence analyses, the strain was assigned to the genus Streptobacillus, with 99.4 % sequence similarity to the type strain of Streptobacillus moniliformis, 95.6 % sequence similarity to the type strain of Streptobacillus hongkongensis and 99.0 % sequence similarity to the type strain of Streptobacillus felis. The clear differentiation of strain AHL 370-1T from Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis was also supported by rpoB, groEL and recA nucleotide and amino acid sequence analysis. Average nucleotide identity was 87.16 % between strain AHL 370-1T and Streptobacillus moniliformis DSM 12112T. Physiological data confirmed the allocation of strain AHL 370-1T to the family Leptotrichiaceae, considering the very similar profiles of enzyme activities and fatty acids compared to closely related species. Within the genus Streptobacillus, isolate AHL 370-1T could also be separated unambiguously from the type strains of Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis by MALDI-TOF mass spectrometry. Two further strains (KWG2 and KWG24) isolated from asymptomatic black rats in Japan were highly similar to AHL 370-1T. On the basis of these data, we propose the novel species Streptobacillus notomytis sp. nov., with the type strain AHL 370-1T ( = CCUG 12425T = DSM 100026T = CCM 8593T = EF 12425T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3248-3255 ◽  
Author(s):  
Ashish Verma ◽  
Poonam Mual ◽  
Shanmugam Mayilraj ◽  
Srinivasan Krishnamurthi

Two novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2349-2354 ◽  
Author(s):  
Timofei A. Pankratov ◽  
Brian J. Tindall ◽  
Werner Liesack ◽  
Svetlana N. Dedysh

Two facultatively aerobic, heterotrophic bacteria capable of degrading pectin, xylan, laminarin and some other polysaccharides were obtained from the acidic Sphagnum peat bog Bakchar, in western Siberia, Russia, and were designated strains TPT18T and TPT56T. Cells of these isolates are Gram-negative, non-motile, long rods that are covered by large capsules. On ageing, they transform into spherical L-forms. Strains TPT18T and TPT56T are acido- and psychrotolerant organisms capable of growth at pH 4.2–8.2 (with an optimum at pH 6.0–6.5) and at 2–33 °C (with an optimum at 20 °C). The major fatty acids are iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c); the quinones are MK-7 and MK-6. Comparative 16S rRNA gene sequence analysis revealed that the novel strains share 97 % sequence similarity and belong to the family Sphingobacteriaceae; however, they are related only distantly to members of the genera Pedobacter (91.8–93.3 % similarity) and Sphingobacterium (89.6–91.2 % similarity). The DNA G+C content of strains TPT18T and TPT56T is 42.4 and 46.1 mol%, respectively. The low DNA–DNA hybridization value (42 %) and a number of phenotypic differences between strains TPT18T and TPT56T indicated that they represent two separate species. Since the two isolates are clearly distinct from all currently described members of the family Sphingobacteriaceae, we propose a novel genus, Mucilaginibacter gen. nov., containing two novel species, Mucilaginibacter gracilis sp. nov. and Mucilaginibacter paludis sp. nov. The type strains of Mucilaginibacter gracilis and Mucilaginibacter paludis are respectively TPT18T (=ATCC BAA-1391T =VKM B-2447T) and TPT56T (=ATCC BAA-1394T =VKM B-2446T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 569-574 ◽  
Author(s):  
Seung Bum Kim ◽  
Olga I. Nedashkovskaya ◽  
Natalia V. Zhukova ◽  
Andrey D. Kuchlevskiy ◽  
Valery V. Mikhailov

The taxonomic position of two strains of a novel heterotrophic, strictly aerobic, Gram-negative, gliding, dark-orange-pigmented bacterium, designated KMM 6217T and KMM 6332, was determined. The strains grew at 10–40 °C and with 0.5–8.0 % NaCl. They were catalase- and oxidase-positive, produced flexirubin-type pigments and hydrolysed aesculin, gelatin, starch, Tween 80 and DNA. The predominant fatty acids were iso-C15 : 1, iso-C15 : 0, C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. The polar lipid profile comprised phosphatidylethanolamine as the major component, three unknown aminolipids and one unknown lipid. The DNA G+C content was 34.7–34.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence showed that the novel isolates could be placed in the family Flavobacteriaceae. The nearest neighbours of strains KMM 6217T and KMM 6332 were members of the genera Bizionia, Formosa, Lacinutrix, Meridianimaribacter, Mesoflavibacter and Winogradskyella, with sequence similarities to the type strains of species of these genera of 92.8–95.2, 93.7–94.5, 94.1–94.7, 94.9, 94.6 and 93.5–94.4 %, respectively. Based on phenotypic, genotypic and phylogenetic data, strains KMM 6217T and KMM 6332 should be classified as representatives of a novel species in a new genus in the family Flavobacteriaceae of the phylum ‘Bacteroidetes’, for which the name Corallibacter vietnamensis gen. nov., sp. nov. is proposed; the type strain is KMM 6217T ( = JCM 17525T = KCTC 23026T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1396-1401 ◽  
Author(s):  
Hyung-Gwan Lee ◽  
Dong-Shan An ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Ju-Ryun Na ◽  
...  

Two novel strains belonging to the phylum Bacteroidetes [formerly the Cytophaga–Flexibacter–Bacteroides (CFB) group], designated Gsoil 040T and Gsoil 052T, were isolated from the soil of a ginseng field in Pocheon province, South Korea. A polyphasic approach was used to characterize the taxonomic position of the novel strains. Both strains were Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolates belong to the genus Chitinophaga but are clearly separated from the recognized species of this genus; gene sequence similarities between the novel isolates and type strains of recognized species ranged from 91.2 to 96.5 %. One exception was found; strain Gsoil 052T and the type strain of Chitinophaga filiformis had a gene sequence similarity of 99.6 % but had a DNA–DNA relatedness value of 38 %. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, iso-C15 : 0 and C16 : 1 ω5c; major hydroxy fatty acid, iso-C17 : 0 3-OH and major polyamine, homospermidine) supported the affiliation of both strains Gsoil 040T and Gsoil 052T to the genus Chitinophaga. The results of physiological and biochemical tests enabled the genotypic and phenotypic differentiation of the novel strains from the other recognized species of the genus Chitinophaga. Therefore, it is suggested that the new isolates represent two novel species, for which the names Chitinophaga ginsengisegetis sp. nov. [type strain Gsoil 040T (=KCTC 12654T=DSM 18108T)] and Chitinophaga ginsengisoli sp. nov. [type strain Gsoil 052T (=KCTC 12592T=DSM 18017T)] are proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4909-4914 ◽  
Author(s):  
Ana I. Vela ◽  
Marta Perez Sancho ◽  
Lucas Domínguez ◽  
Hans-Jürgen Busse ◽  
Jose F. Fernández-Garayzábal

Biochemical and molecular genetic studies were performed on three novel Gram-stain-negative, catalase- and oxidase-positive, bacilli-shaped organisms isolated from the tonsils of two pigs and one wild boar. The micro-organism was identified as a species of the genus Pelistega based on its cellular morphological and biochemical tests. The closest phylogenetic relative of the novel bacilli was Pelistega indica HM-7T (98.2 % 16S rRNA gene sequence similarity to the type strain). groEL and gyrB sequence analysis showed interspecies divergence from the closest 16S rRNA gene phylogenetic relative, P. indica of 87.0.% and 69 %, respectively. The polyamine pattern contains predominantly putrescine and 2-hydroxyputrescine. The major quinone is ubiquinone Q-8 and in the polar lipid profile, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid are predominant. The novel bacterial isolate can be distinguished from P. indica by several biochemical characteristics, such as the production of l-pyrrolydonil arylamidase but not gamma-glutamyl-transferase, and the utilization of different carbon sources. Based on both phenotypic and phylogenetic findings, the novel bacterium is classified as representing a novel species of the genus Pelistega, for which the name Pelistega suis sp. nov. is proposed. The type strain is 3340-03T ( = CECT 8400T = CCUG 64465T).


Sign in / Sign up

Export Citation Format

Share Document