scholarly journals Streptobacillus notomytis sp. nov., isolated from a spinifex hopping mouse (Notomys alexis Thomas, 1922), and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend.

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4823-4829 ◽  
Author(s):  
Tobias Eisenberg ◽  
Stefanie P. Glaeser ◽  
Christa Ewers ◽  
Torsten Semmler ◽  
Werner Nicklas ◽  
...  

A pleomorphic, Gram-negative, rod-shaped, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile bacterium was isolated in 1979 from the heart of a spinifex hopping mouse (Notomys alexis Thomas, 1922) with septicaemia and stored as Streptobacillus moniliformis in the strain collection of the Animal Health Laboratory, South Perth, Western Australia (AHL 370-1), as well as under CCUG 12425. On the basis of 16S rRNA gene sequence analyses, the strain was assigned to the genus Streptobacillus, with 99.4 % sequence similarity to the type strain of Streptobacillus moniliformis, 95.6 % sequence similarity to the type strain of Streptobacillus hongkongensis and 99.0 % sequence similarity to the type strain of Streptobacillus felis. The clear differentiation of strain AHL 370-1T from Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis was also supported by rpoB, groEL and recA nucleotide and amino acid sequence analysis. Average nucleotide identity was 87.16 % between strain AHL 370-1T and Streptobacillus moniliformis DSM 12112T. Physiological data confirmed the allocation of strain AHL 370-1T to the family Leptotrichiaceae, considering the very similar profiles of enzyme activities and fatty acids compared to closely related species. Within the genus Streptobacillus, isolate AHL 370-1T could also be separated unambiguously from the type strains of Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis by MALDI-TOF mass spectrometry. Two further strains (KWG2 and KWG24) isolated from asymptomatic black rats in Japan were highly similar to AHL 370-1T. On the basis of these data, we propose the novel species Streptobacillus notomytis sp. nov., with the type strain AHL 370-1T ( = CCUG 12425T = DSM 100026T = CCM 8593T = EF 12425T).

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2172-2178 ◽  
Author(s):  
Tobias Eisenberg ◽  
Stefanie P. Glaeser ◽  
Werner Nicklas ◽  
Norman Mauder ◽  
Matthias Contzen ◽  
...  

A pleomorphic, Gram-stain-negative, rod-shaped, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile bacterium (strain 131000547T) was isolated from the lungs of a cat with pneumonia. On the basis of 16S rRNA gene sequence analyses the strain was assigned to the genus Streptobacillus with 97.6  % sequence similarity to the type strain of Streptobacillus moniliformis and 94.6  % to that of Streptobacillus hongkongensis. The clear differentiation of strain 131000547T from Streptobacillus moniliformis and Streptobacillus hongkongensis was also supported by gyrB, groEL, and recA nucleotide and amino acid sequence analysis. DNA–DNA hybridization demonstrated ≤ 19.9  % (reciprocal 28.7  %) DNA–DNA relatedness between strain 131000547T and Streptobacillus moniliformis DSM 12112T. Physiological data confirmed the allocation of strain 131000547T to the family Leptotrichiaceae. Strain 131000547T has a unique profile of enzyme activities allowing differentiation from the most closely related species. Within the genus Streptobacillus, isolate 131000547T could also unambiguously be separated from Streptobacillus moniliformis and Streptobacillus hongkongensis by both matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Fourier transform-infrared spectroscopy. On the basis of these data, a novel species of the genus Streptobacillus, Streptobacillus felis sp. nov., is proposed with the type strain 131000547T ( = DSM 29248T = CCUG 66203T = CCM 8542T). Emended descriptions of the genus Streptobacillus and of Streptobacillus moniliformis are also given.


2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3248-3255 ◽  
Author(s):  
Ashish Verma ◽  
Poonam Mual ◽  
Shanmugam Mayilraj ◽  
Srinivasan Krishnamurthi

Two novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2066-2070 ◽  
Author(s):  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen ◽  
P. D. Rekha ◽  
Kerstin Fallschissel ◽  
...  

The taxonomic position of a bright orange-pigmented bacterial strain, designated CC-GZM-130T, isolated from a water sample of the Guan-zing-ling hot spring, southern Taiwan, was studied. The strain was able to grow on nutrient agar at 25–40 °C and in the presence of 1–3 % (w/v) NaCl. Comparative analyses of the 16S rRNA gene sequence showed that the isolate was grouped in the vicinity of the genus Aquiflexum with the highest sequence similarity of 92.1 % to the type strain of Aquiflexum balticum, followed by sequence similarities of 92.0, 91.6 and 91.5 % to the type strains of Algoriphagus ornithinivorans, Algoriphagus hitonicola and Belliella baltica, respectively. The polyamine pattern showed that the major compound was sym-homospermidine. The quinone system was menaquinone MK-7. The polar lipid profile was composed predominantly of phosphatidylethanolamine, three polar lipids and one aminolipid. Minor amounts of other lipids were also detectable. The main characteristics of the fatty acid profiles of strain CC-GZM-130T, B. baltica and Aquiflexum balticum were similar, with iso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH as the major fatty acids, but some qualitative and quantitative differences were observed. The DNA G+C content of the novel strain was 53.2 mol%. The isolate clearly differed genotypically and phenotypically from representatives of the most closely related genera. On the basis of these differences, a novel species in a new genus, Fontibacter flavus gen. nov., sp. nov., is proposed with CC-GZM-130T (=CCUG 57694T=CCM 7650T) as the type strain of the type species.


2006 ◽  
Vol 56 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Five strains belonging to the family Flavobacteriaceae were isolated from marine-sediment samples collected in Sagami and Tokyo bays on the Pacific coastline of Japan. The five isolates formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The most closely related species with a validly published name was Cellulophaga lytica. The five isolates were rod-shaped, Gram-negative, aerobic, catalase- and oxidase-positive, flexirubin-negative and yellow-pigmented. The dominant fatty acids were branched or hydroxy acids, i.e. i-C15 : 0, i-C15 : 1 and i-C17 : 0 3-OH. These strains degraded gelatin, casein, DNA and Tween 80. The G+C content of their DNAs ranged between 33 and 39 mol%. Although analysis of the 16S rRNA gene sequence similarity divided these strains into two subgroups with a 2·3 % sequence difference, the results of DNA–DNA hybridization indicated the grouping of these strains into three distinct species. On the basis of phenotypic and genotypic analyses, the novel genus Krokinobacter is proposed, with Krokinobacter genikus sp. nov., containing three of the strains, as the type species. The type strain is Cos-13T (=NBRC 100811T=CIP 108744T). The names Krokinobacter eikastus sp. nov. (type strain PMA-26T=NBRC 100814T=CIP 108743T) and Krokinobacter diaphorus sp. nov. (type strain MSKK-32T=NBRC 100817T=CIP 108745T) are proposed for the other two isolates.


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


Sign in / Sign up

Export Citation Format

Share Document