scholarly journals Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae

2006 ◽  
Vol 56 (4) ◽  
pp. 899-905 ◽  
Author(s):  
Wen Dar Jean ◽  
Wung Yang Shieh ◽  
Hsiu-Hui Chiu

Two strains of heterotrophic, aerobic, marine bacteria, designated strains PIT1T and PIT2, were isolated from sea-water samples collected at the shallow coastal region of An-Ping Harbour, Tainan, Taiwan. Both strains were Gram-negative. Cells grown in broth cultures were straight rods that were non-motile, lacking flagella. Both strains required NaCl for growth and exhibited optimal growth at 30–35 °C, 1–4 % NaCl and pH 8. They grew aerobically and were incapable of anaerobic growth by fermentation of glucose or other carbohydrates. Cellular fatty acids were predominantly iso-branched, with C15 : 0 iso and C17 : 0 iso representing the most abundant components. The DNA G+C contents of strains PIT1T and PIT2 were 49·3 and 48·6 mol%, respectively. Phylogeny based on 16S rRNA gene sequences, together with data from phenotypic and chemotaxonomic characterization, revealed that the two isolates could be assigned to a novel genus in the family Idiomarinaceae, for which the name Pseudidiomarina gen. nov. is proposed. Pseudidiomarina taiwanensis sp. nov. is the type species of the novel genus (type strain PIT1T=BCRC 17465T=JCM 13360T).

2007 ◽  
Vol 57 (5) ◽  
pp. 1050-1054 ◽  
Author(s):  
Seung Seob Bae ◽  
Kae Kyoung Kwon ◽  
Sung Hyun Yang ◽  
Hee-Soon Lee ◽  
Sang-Jin Kim ◽  
...  

A marine bacterium, DOKDO 007T, was isolated from the rhizosphere of the marine alga Ecklonia kurome collected from Dokdo Island, Korea, in October 2004. The strain produced orange-coloured colonies on marine agar 2216. 16S rRNA gene sequence analysis indicated that the novel isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarities with members of the genus Muricauda (92.0–94.0 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the novel isolate shared a lineage with members of the genera Muricauda and Costertonia. Cells were aerobic, Gram-negative rods producing non-diffusible carotenoid pigments. In contrast to all other members of the family Flavobacteriaceae, cells of DOKDO 007T were motile by means of a polar flagellum. Optimal growth occurred in the presence of 3.5–4 % (w/v) sea salts (corresponding to 2.7–3.1 % NaCl), at pH 8 and at temperatures of 26–29 °C. The novel strain required Ca2+ ions in addition to NaCl for growth. The dominant fatty acids were iso-15 : 0, iso-15 : 1ω10c and 10-methyl-16 : 0. The major respiratory quinone was MK-6. The DNA G+C content was 56.3 mol%, an unusually high value for members of the family Flavobacteriaceae. On the basis of these polyphasic taxonomic data, strain DOKDO 007T should be classified as representing a new genus and novel species in the family Flavobacteriaceae, for which the name Flagellimonas eckloniae gen. nov., sp. nov. is proposed. The type strain is DOKDO 007T (=KCCM 42307T=JCM 13831T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
Wen Dar Jean ◽  
Wung Yang Shieh ◽  
Tung Yen Liu

A marine agarolytic bacterium, designated strain TMA1T, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 °C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C16 : 0 (17.5 %), C17 : 1 ω8c (12.8 %), C17 : 0 (11.1 %), C15 : 0 iso 2-OH/C16 : 1 ω7c (8.6 %) and C13 : 0 (7.3 %). The DNA G+C content was 41.0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Thalassomonas in the family Colwelliaceae. The name Thalassomonas agarivorans sp. nov. is proposed for the novel species, with TMA1T (=BCRC 17492T=JCM 13379T) as the type strain.


2004 ◽  
Vol 54 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Anatoly M. Lysenko ◽  
Manfred Rohde ◽  
...  

Six novel gliding, heterotrophic, Gram-negative, yellow-pigmented, aerobic, oxidase- and catalase-positive bacteria were isolated from the green alga Ulva fenestrata, sea water and a bottom sediment sample collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied were members of the family Flavobacteriaceae. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacteria have been assigned to the new genus Maribacter gen. nov., as Maribacter sedimenticola sp. nov., Maribacter orientalis sp. nov., Maribacter aquivivus sp. nov. and Maribacter ulvicola sp. nov., with the type strains KMM 3903T (=KCTC 12966T=CCUG 47098T), KMM 3947T (=KCTC 12967T=CCUG 48008T), KMM 3949T (=KCTC 12968T=CCUG 48009T) and KMM 3951T (=KCTC 12969T=DSM 15366T), respectively.


2020 ◽  
Vol 70 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Annemarie Siebert ◽  
Christopher Huptas ◽  
Mareike Wenning ◽  
Siegfried Scherer ◽  
Etienne V. Doll

Three strains of a Gram-stain-positive, catalase-negative, facultative anaerobic, and coccoid species were isolated from German bulk tank milk. Phylogenetic analyses based on the 16S rRNA gene sequences indicated that the three strains (WS4937T, WS4759 and WS5303) constitute an independent phylogenetic lineage within the family Aerococcaceae with Facklamia hominis CCUG 36813T (93.7–94.1 %) and Eremococcus coleocola M1831/95/2T (93.5 %) as most closely related type species. The unclassified strains demonstrated variable growth with 6.5 % (w/v) NaCl and tolerated pH 6.5–9.5. Growth was observed from 12 to 39 °C. Their cell-wall peptidoglycan belongs to the A1α type (l-Lys-direct) consisting of alanine, glutamic acid and lysine. The predominant fatty acids were C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c and in the polar lipids profile three glycolipids, a phospholipid, phosphatidylglycerol, phosphoglycolipid and diphosphatidylglycerol were found. The G+C content of strain WS4937T was 37.4 mol% with a genome size of ~3.0 Mb. Based on phylogenetic, phylogenomic and biochemical characterizations, the isolates can be demarcated from all other genera of the family Aerococcaceae and, therefore, the novel genus Fundicoccus gen. nov. is proposed. The type species of the novel genus is Fundicoccus ignavus gen. nov., sp. nov. WS4937T (=DSM 109652T=LMG 31441T).


2012 ◽  
Vol 62 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Ssu-Po Huang ◽  
Hsiao-Yun Chang ◽  
Jwo-Sheng Chen ◽  
Wen Dar Jean ◽  
Wung Yang Shieh

A Gram-negative, heterotrophic, aerobic, marine bacterium, designated AIT1T, was isolated from a seawater sample collected in the shallow coastal region of Bitou Harbour, New Taipei City, Taiwan. Cells grown in broth cultures were straight or slightly curved rods that were motile by means of a single polar flagellum. Strain AIT1T required NaCl for growth, grew optimally at 30–40 °C and with 1.5–5.0 % NaCl, and was incapable of anaerobic growth by fermentation of glucose or other carbohydrates. The isoprenoid quinones consisted of Q-8 (95.2 %) and Q-9 (4.8 %). The major polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cellular fatty acids were predominantly iso-branched and included iso-C17 : 0 (26.5 %), summed feature 9 (comprising iso-C17 : 1ω9c and/or 10-methyl C16 : 0; 25.9 %) and iso-C15 : 0 (20.5 %). The DNA G+C content was 51.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain AIT1T formed a distinct lineage within the class Gammaproteobacteria and was most closely related to members of the genus Idiomarina in the family Idiomarinaceae (91.5–93.9 % 16S rRNA gene sequence similarity). The phylogenetic data, together with chemotaxonomic, physiological and morphological data, revealed that the isolate should be classified as a representative of a novel species in a new genus in the family Idiomarinaceae, for which the name Aliidiomarina taiwanensis gen. nov., sp. nov. is proposed. The type strain is AIT1T ( = JCM 16052T = BCRC 80035T = NCCB 100321T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2147-2150 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Seung Bum Kim ◽  
Bart Hoste ◽  
Kyung Sook Bae

A novel marine bacterium, designated strain KMM 6171T, was subjected to taxonomic analysis by using a polyphasic approach. Colonies were yellow-pigmented and cells were Gram-negative, heterotrophic rods displaying slow gliding motility. 16S rRNA gene sequence analysis indicated that strain KMM 6171T was closely related to the genus Algibacter, a member of the family Flavobacteriaceae, with sequence similarity of 96.7–96.8 %. The predominant cellular fatty acids were iso-C15 : 1, iso-C15 : 0, anteiso-C15 : 0, C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3, comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH. The DNA G+C content was 35.1 mol%. On the basis of the phenotypic, genotypic, chemotaxonomic and phylogenetic data, strain KMM 6171T represents a novel species of the genus Algibacter, for which the name Algibacter mikhailovii sp. nov. is proposed. The type strain is KMM 6171T (=KCTC 12710T=LMG 23988T). An emended description of the genus Algibacter based on the new data is also given.


2010 ◽  
Vol 60 (3) ◽  
pp. 633-637 ◽  
Author(s):  
F. F. Hezayen ◽  
M. C. Gutiérrez ◽  
A. Steinbüchel ◽  
B. J. Tindall ◽  
B. H. A. Rehm

Strain 56T was isolated from a hypersaline soil in Aswan (Egypt). Cells were pleomorphic rods. The organism was neutrophilic, motile and required at least 1.7 M (10 % w/v) NaCl, but not MgCl2, for growth; optimal growth occurred at ≥3.8 M (≥22.5 %) NaCl. The strain was thermotolerant with an optimum temperature for growth of 40 °C, although growth was possible up to 55 °C. The G+C content of the DNA of the novel strain was 67.1 mol%.16S rRNA gene sequence analysis revealed that strain 56T was a member of the phyletic group defined by the family Halobacteriaceae, showing the highest similarity to Halopiger xanaduensis SH-6T (99 %) and the next highest similarity of 94 % to other members of the family Halobacteriaceae. DNA–DNA hybridization revealed 27 % relatedness between strain 56T and Hpg. xanaduensis SH-6T. Polar lipid analysis revealed the presence of the bis-sulfated glycolipid S2-DGD-1 as the sole glycolipid and the absence of the glycerol diether analogue phosphatidylglycerosulfate. Both C20 . 20 and C20 . 25 core lipids were present. Strain 56T accumulated large amounts of polyhydroxybutyrate and also secreted an exopolymer. Physiological and biochemical differences suggested that Hpg. xanaduanesis and strain 56T were sufficiently different to be separated into two distinct species. It is suggested that strain 56T represents a novel species of the genus Halopiger, for which the name Halopiger aswanensis sp. nov. is proposed. The type strain is strain 56T (=DSM 13151T=JCM 11628T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1797-1800 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Anatoly M. Lysenko ◽  
Myung Soo Park ◽  
Valery V. Mikhailov ◽  
...  

A novel strictly aerobic, heterotrophic, pink-pigmented, non-motile, Gram-negative, oxidase-, catalase-, β-galactosidase- and alkaline phosphatase-positive marine bacterium, designated strain KMM 6058T, was isolated from the sea urchin Strongylocentrotus intermedius and studied using a polyphasic taxonomic approach. The G+C content of the DNA of the isolate was 41·3 mol%. The predominant fatty acids were i15 : 1, i15 : 0, a15 : 0 and i17 : 0 3-OH. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KMM 6058T formed a monophyletic clade with Roseivirga ehrenbergii, with 99 % similarity. On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacterium should be assigned to the genus Roseivirga as Roseivirga echinicomitans sp. nov. The type strain is KMM 6058T (=KCTC 12370T=LMG 22587T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2034-2040 ◽  
Author(s):  
Wakao Fukuda ◽  
Yohzo Chino ◽  
Shigeo Araki ◽  
Yuka Kondo ◽  
Hiroyuki Imanaka ◽  
...  

A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7T) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7T grew at temperatures between −4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0 %, with an optimum of 0.5 %. Strain 262-7T showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C17 : 1ω6c (28.2 %), C16 : 1ω7c (22.6 %), C18 : 1ω7c (12.9 %) and C15 : 0 2-OH (12.3 %). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7T belongs to the family Sphingomonadaceae , and that 262-7T should be distinguished from known genera in the family Sphingomonadaceae . According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7T should be classified as a representative of a novel genus of the family Sphingomonadaceae . Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7T = JCM 18140T = ATCC BAA-2413T). The novel species was named after its morphological diversity and formation of unique projections.


2022 ◽  
Author(s):  
Senlie Octaviana ◽  
Stefan Lorenczyk ◽  
Frederike Ackert ◽  
Joachim Wink

Abstract Four strains isolated, PWU4T, PWU20T, PWU5T and PWU37T were from both of soil in Germany, India and a faces sheep collected in Crete Island, respectively. Cells were Gram-negative, strictly aerobic, rod shaped, grew optimally between 28oC and 34oC, pH between 7.0 and 8.0 without the addition of NaCl. Catalase and oxidase-negative and grew on most mono- and disaccharides, a few polysaccharides and organic acid. The predominant menaquinone was MK-7. Major fatty acid was c16:1 ω7c (PWU4T and PWU20T) and c16:1 ω5c (PWU5T and PWU37T). The DNA G+C content of them were 50.2 mol %; 51.6 mol %; 39.8 mol % and 53.8 mol %, respectively. The 16S rRNA gene sequence analysis revealed that the closest relatives of them are less than 93.8% compared to Ohtaekwangia koreensis 3B-2T and Ohtaekwangia kribbensis 10AOT. It classified in two groups, where PWU4T, PWU20T shared 93.0% and PWU5T, PWU37T shared 97.5% sequence similarity. However, in both groups represent different species on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We proposed that the four strains represent four novel species of two new genera in the family Cytophagaceae. The type species of the novel genus Cryseosolum are Cryseosolum histdinii gen. nov., sp. nov. strain PWU4T (=DSM 111594T=NCCB 100798T), Cryseosolum indiensis sp. nov. strain PWU20T (=DSM 111597T=NCCB 100800T). The type species of the novel genus Reichenbachia are Reichenbachia cretensis gen. nov., sp. nov. strain PWU5T (=DSM 111596T=NCCB 100799T), Reichenbachia soli sp. nov. strain PWU37T (=DSM 111595T=NCCB 100801T).


Sign in / Sign up

Export Citation Format

Share Document