scholarly journals Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area

2006 ◽  
Vol 56 (11) ◽  
pp. 2603-2608 ◽  
Author(s):  
Anna H. Kaksonen ◽  
Stefan Spring ◽  
Peter Schumann ◽  
Reiner M. Kroppenstedt ◽  
Jaakko A. Puhakka

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from an underground mine in a geothermally active area in Japan. Cells of this strain, designated RL50JIIIT, were rod-shaped and motile. The temperature range for growth was 50–72 °C (optimum growth at 61–66 °C) and the pH range was 6.4–7.8 (optimum at pH 7.2–7.4). Strain RL50JIIIT tolerated up to 1.5 % NaCl, but optimum growth occurred in the presence of 0–1 % NaCl. Electron acceptors utilized were sulfate, sulfite, thiosulfate and elemental sulfur. Electron donors utilized were H2 in the presence of CO2, alanine, various carboxylic acids and alcohols. Fermentative growth occurred on lactate and pyruvate. The cell wall contained mesodiaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone 7 (MK-7). Major whole-cell fatty acids were iso-C15 : 0, iso-C17 : 0 DMA (dimethyl acetal), iso-C15 : 0 DMA and iso-C17 : 0. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed 98.7 % similarity with Desulfotomaculum solfataricum DSM 14956T. However, DNA–DNA hybridization experiments with Desulfotomaculum kuznetsovii, Desulfotomaculum luciae and D. solfataricum and the G+C content of the DNA (54.4 mol%) allowed the differentiation of strain RL50JIIIT from the recognized species of the genus Desulfotomaculum. Strain RL50JIIIT therefore represents a novel species, for which the name Desulfotomaculum thermosubterraneum sp. nov. is proposed. The type strain is RL50JIIIT (=DSM 16057T=JCM 13837T).

2007 ◽  
Vol 57 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Anna H. Kaksonen ◽  
Stefan Spring ◽  
Peter Schumann ◽  
Reiner M. Kroppenstedt ◽  
Jaakko A. Puhakka

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterial strain, designated RL80JIVT, was isolated from a geothermally active underground mine in Japan. Cells were rod-shaped and motile. The temperature and pH ranges for growth were 61–80 °C (optimum at 69–72 °C) and pH 6.4–7.9 (optimum at pH 6.8–7.3), and the strain tolerated up to 0.5 % NaCl. Strain RL80JIVT utilized sulfate, sulfite, thiosulfate and elemental sulfur as electron acceptors. Electron donors utilized were H2 in the presence of CO2, and carboxylic acids. Fermentative growth occurred on lactate and pyruvate. The cell wall contained meso-diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. Strain RL80JIVT was found to be affiliated with the thiosulfate-reducer Thermanaeromonas toyohensis DSM 14490T (90.9 % 16S rRNA gene sequence similarity) and with the sulfate-reducer Desulfotomaculum thermocisternum DSM 10259T (90.0 % similarity). Strain RL80JIVT is therefore considered to represent a novel species of a new genus, for which the name Desulfovirgula thermocuniculi gen. nov., sp. nov. is proposed. The type strain of Desulfovirgula thermocuniculi is RL80JIVT (=DSM 16036T=JCM 13928T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1089-1094 ◽  
Author(s):  
Anna H. Kaksonen ◽  
Stefan Spring ◽  
Peter Schumann ◽  
Reiner M. Kroppenstedt ◽  
Jaakko A. Puhakka

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from a sulfidogenic fluidized-bed reactor treating acidic metal- and sulfate-containing water. The strain, designated RA50E1T, was rod-shaped and motile. The strain grew at 40–67 °C (optimum growth at 59–61 °C) and pH 6.4–7.9 (optimum growth at pH 7.0–7.3). The strain tolerated up to 1 % NaCl. Sulfate, sulfite, thiosulfate and elemental sulfur were used as electron acceptors, but not nitrate, nitrite or iron(III). Electron donors utilized were H2/CO2 (80 : 20, v/v), alcohols, various carboxylic acids and some sugars. Fermentative growth occurred on lactate and pyruvate. The cell wall contained meso-diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C15 : 0 and iso-C17 : 0. Strain RA50E1T was distantly related to representatives of the genera Desulfotomaculum, Pelotomaculum, Sporotomaculum and Cryptanaerobacter. On the basis of 16S rRNA gene sequence data, the strain cannot be assigned to any known genus. Based on the phenotypic and phylogenetic features of strain RA50E1T, it is proposed that the strain represents a novel species in a new genus, for which the name Desulfurispora thermophila gen. nov., sp. nov. is proposed. The type strain of Desulfurispora thermophila is RA50E1T (=DSM 16022T=JCM 14018T).


2004 ◽  
Vol 54 (1) ◽  
pp. 227-233 ◽  
Author(s):  
H. Moussard ◽  
S. L'Haridon ◽  
B. J. Tindall ◽  
A. Banta ◽  
P. Schumann ◽  
...  

A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812T, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55–80 °C, with an optimum at 70 °C. The NaCl concentration range for growth was 10–35 g l−1, with an optimum at 25 g l−1. The pH range for growth was 6–6·7, with an optimum at approximately pH 6·25. H2 and CO2 were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812T were similar to those of Thermodesulfobacterium hydrogeniphilum, a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family Thermodesulfobacteriaceae (similarity values of less than 90 %). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812T could be distinguished from Thermodesulfobacterium commune, the type species of the type genus of the family Thermodesulfobacteriaceae. Finally, the G+C content of the genomic DNA of strain CIR29812T (46·0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812T represents a novel species of a new genus, Thermodesulfatator, of which Thermodesulfatator indicus is the type species. The type strain is CIR29812T (=DSM 15286T=JCM 11887T).


2021 ◽  
Author(s):  
Ayaka Takahashi ◽  
Hisaya Kojima ◽  
Miho Watanabe ◽  
Manabu Fukui

Abstract A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile and rod-shaped with length of 1.2–2.5 μm and width of 0.6–0.9 μm. Growth was observed at 10–37°C with an optimum growth temperature of 28°C. The pH range for growth was 5.8–8.2 with an optimum pH of 7.0. The most predominant fatty acid was anteiso-C15 : 0. Under sulfate-reducing conditions, strain SF6T utilized formate, lactate, ethanol and glucose as growth substrate. Chemolithoautotrophic growth on H2 was also observed. Fermentative growth occurred on pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported heterotrophic growth of the strain. The complete genome of strain SF6T is composed of a circular chromosome with length of 3.8 Mbp and G + C content of 54 mol%. Analyses of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 114895T) is proposed as the type strain of a new species, with name of Pseudodesulfovibrio sediminis sp. nov.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2005 ◽  
Vol 55 (1) ◽  
pp. 473-478 ◽  
Author(s):  
Elena V. Pikuta ◽  
Damien Marsic ◽  
Asim Bej ◽  
Jane Tang ◽  
Paul Krader ◽  
...  

A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0·6–0·7×0·9–1·5 μm. Growth occurred within the pH range 6·5–9·5 with optimum growth at pH 7·3–7·5. The temperature range for growth of the novel isolate was 0–28 °C and optimum growth occurred at 24 °C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0·5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99·8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA–DNA hybridization between them demonstrated 39±1·5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.


2007 ◽  
Vol 57 (10) ◽  
pp. 2299-2306 ◽  
Author(s):  
Takeshi Yamada ◽  
Hiroyuki Imachi ◽  
Akiyoshi Ohashi ◽  
Hideki Harada ◽  
Satoshi Hanada ◽  
...  

Thermophilic (strain GOMI-1T) and mesophilic (strain KOME-1T) strains were isolated from two different cultures of propionate-degrading consortia obtained from thermophilic digester sludge and rice paddy soil, respectively. The two strains were non-spore-forming, non-motile and Gram-negative. Both strains were obligately anaerobic micro-organisms, showing multicellular filamentous morphotypes more than 100 μm in length. The cell width for strain GOMI-1T was 0.2–0.4 μm and that of strain KOME-1T was 0.4–0.6 μm. Strain GOMI-1T could grow at 45–65 °C with a pH range of 6.0–7.5 (optimum growth at 55 °C, pH 7.0). The temperature range for growth of strain KOME-1T was 30–40 °C and the pH range was pH 5.0–8.5 (optimum growth around 37 °C, pH 7.0). Yeast extract was required for growth of both strains. Strain GOMI-1T was able to grow with a number of carbohydrates in the presence of yeast extract. In yeast extract-containing medium, strain KOME-1T could utilize proteins and a limited range of sugars for growth. The G+C contents of the DNA of strains GOMI-1T and KOME-1T were respectively 54.7 and 57.6 mol%. Major fatty acids of strain GOMI-1T were C16 : 0, C14 : 0 and iso-C15 : 0, whereas those of strain KOME-1T were iso-C15 : 0, anteiso-C15 : 0 and C14 : 0. Based on comparative analysis of 16S rRNA gene sequences of strains GOMI-1T and KOME-1T, the strains were placed in different phylogenetic positions in the class Anaerolineae of the bacterial phylum Chloroflexi. Their phenotypic and genetic traits strongly supported the conclusion that the strains should be described as two independent taxa in the class Anaerolineae. Hence, we propose the names Bellilinea caldifistulae gen. nov., sp. nov., and Longilinea arvoryzae gen. nov., sp. nov., for strains GOMI-1T and KOME-1T. The type strains of Bellilinea caldifistulae and Longilinea arvoryzae are respectively GOMI-1T (=JCM 13669T =DSM 17877T) and KOME-1T (=JCM 13670T =KTCC 5380T).


2009 ◽  
Vol 76 (4) ◽  
pp. 1014-1020 ◽  
Author(s):  
Scott D. Hamilton-Brehm ◽  
Jennifer J. Mosher ◽  
Tatiana Vishnivetskaya ◽  
Mircea Podar ◽  
Sue Carroll ◽  
...  

ABSTRACT A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


2010 ◽  
Vol 60 (8) ◽  
pp. 1794-1801 ◽  
Author(s):  
Shuhei Yabe ◽  
Yoshifumi Aiba ◽  
Yasuteru Sakai ◽  
Masaru Hazaka ◽  
Akira Yokota

We isolated from compost an aerobic, thermophilic, Gram-stain-positive, spore-forming bacterium that formed branched vegetative and aerial mycelia. This strain, designated SK20-1T, grew at 31–58 °C, with optimum growth at 50 °C, while no growth was observed below 28 or above 60 °C. The pH range for growth was 5.4–8.7, with optimum growth at pH 7.0, while no growth was observed below pH 5.0 or above pH 9.1. Strain SK20-1T was able to hydrolyse polysaccharides such as cellulose, xylan and chitin. The DNA G+C content was 54.0 mol%. The major fatty acid was iso-C17 : 0 and the major menaquinone was MK-9(H2). The cell wall contained glutamic acid, serine, alanine and ornithine in a molar ratio of 1.00 : 1.07 : 2.64 : 0.83. The polar lipids consisted of phosphatidylinositol, phosphatidylinositol mannosides, phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. Cell-wall sugars were rhamnose and mannose. Detailed phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SK20-1T belongs to the class Ktedonobacteria, and that the strain is most closely related to Ktedonobacter racemifer SOSP1-21T (88.5 %). On the basis of its phenotypic features and phylogenetic position, we propose that SK20-1T represents a novel genus and species, Thermosporothrix hazakensis gen. nov., sp. nov., within the new family Thermosporotrichaceae fam. nov. The type strain of Thermosporothrix hazakensis is strain SK20-1T (=JCM 16142T =ATCC BAA-1881T). In addition, we propose an emended description of the class Ktedonobacteria to classify the class in the phylum Chloroflexi.


Sign in / Sign up

Export Citation Format

Share Document