scholarly journals Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia

2007 ◽  
Vol 57 (10) ◽  
pp. 2299-2306 ◽  
Author(s):  
Takeshi Yamada ◽  
Hiroyuki Imachi ◽  
Akiyoshi Ohashi ◽  
Hideki Harada ◽  
Satoshi Hanada ◽  
...  

Thermophilic (strain GOMI-1T) and mesophilic (strain KOME-1T) strains were isolated from two different cultures of propionate-degrading consortia obtained from thermophilic digester sludge and rice paddy soil, respectively. The two strains were non-spore-forming, non-motile and Gram-negative. Both strains were obligately anaerobic micro-organisms, showing multicellular filamentous morphotypes more than 100 μm in length. The cell width for strain GOMI-1T was 0.2–0.4 μm and that of strain KOME-1T was 0.4–0.6 μm. Strain GOMI-1T could grow at 45–65 °C with a pH range of 6.0–7.5 (optimum growth at 55 °C, pH 7.0). The temperature range for growth of strain KOME-1T was 30–40 °C and the pH range was pH 5.0–8.5 (optimum growth around 37 °C, pH 7.0). Yeast extract was required for growth of both strains. Strain GOMI-1T was able to grow with a number of carbohydrates in the presence of yeast extract. In yeast extract-containing medium, strain KOME-1T could utilize proteins and a limited range of sugars for growth. The G+C contents of the DNA of strains GOMI-1T and KOME-1T were respectively 54.7 and 57.6 mol%. Major fatty acids of strain GOMI-1T were C16 : 0, C14 : 0 and iso-C15 : 0, whereas those of strain KOME-1T were iso-C15 : 0, anteiso-C15 : 0 and C14 : 0. Based on comparative analysis of 16S rRNA gene sequences of strains GOMI-1T and KOME-1T, the strains were placed in different phylogenetic positions in the class Anaerolineae of the bacterial phylum Chloroflexi. Their phenotypic and genetic traits strongly supported the conclusion that the strains should be described as two independent taxa in the class Anaerolineae. Hence, we propose the names Bellilinea caldifistulae gen. nov., sp. nov., and Longilinea arvoryzae gen. nov., sp. nov., for strains GOMI-1T and KOME-1T. The type strains of Bellilinea caldifistulae and Longilinea arvoryzae are respectively GOMI-1T (=JCM 13669T =DSM 17877T) and KOME-1T (=JCM 13670T =KTCC 5380T).

2006 ◽  
Vol 56 (6) ◽  
pp. 1331-1340 ◽  
Author(s):  
Takeshi Yamada ◽  
Yuji Sekiguchi ◽  
Satoshi Hanada ◽  
Hiroyuki Imachi ◽  
Akiyoshi Ohashi ◽  
...  

One thermophilic (strain IMO-1T) and two mesophilic (strains KIBI-1T and YMTK-2T) non-spore-forming, non-motile, Gram-negative, multicellular filamentous micro-organisms, which were previously isolated as members of the tentatively named class ‘Anaerolineae’ of the phylum Chloroflexi, were characterized. All isolates were strictly anaerobic micro-organisms. The length of the three filamentous isolates was greater than 100 μm and the width was 0.3–0.4 μm for strain IMO-1T, 0.4–0.5 μm for strain KIBI-1T and thinner than 0.2 μm for strain YMTK-2T. Strain IMO-1T could grow at pH 6.0–7.5 (optimum growth at pH 7.0). The optimal temperature for growth of strain IMO-1T was around 50 °C (growth occurred between 42 and 55 °C). Growth of the mesophilic strains KIBI-1T and YMTK-2T occurred at pH 6.0–7.2 with optimal growth at pH 7.0. Both of the mesophilic strains were able to grow in a temperature range of 25–50 °C with optimal growth at around 37 °C. Yeast extract was required for growth of all three strains. All the strains could grow with a number of carbohydrates in the presence of yeast extract. The G+C contents of the DNA of strains IMO-1T, KIBI-1T and YMTK-2T were respectively 53.3, 59.5 and 48.2 mol%. Major fatty acids for thermophilic strain IMO-1T were anteiso-C17 : 0, iso-C15 : 0, C16 : 0 and anteiso-C15 : 0, whereas those for mesophilic strains KIBI-1T and YMTK-2T were branched C14 : 0, iso-C15 : 0, C16 : 0 and branched C17 : 0, and branched C17 : 0, C16 : 0, C14 : 0 and C17 : 0, respectively. Detailed phylogenetic analyses based on their 16S rRNA gene sequences indicated that the isolates belong to the class-level taxon ‘Anaerolineae’ of the bacterial phylum Chloroflexi, which for a long time had been considered as a typical uncultured clone cluster. Their morphological, physiological, chemotaxonomic and genetic traits strongly support the conclusion that these strains should be described as three novel independent taxa in the phylum Chloroflexi. Here, Anaerolinea thermolimosa sp. nov. (type strain IMO-1T=JCM 12577T=DSM 16554T), Levilinea saccharolytica gen. nov., sp. nov. (type strain KIBI-1T=JCM 12578T=DSM 16555T) and Leptolinea tardivitalis gen. nov., sp. nov. (type strain YMTK-2T=JCM 12579T=DSM 16556T) are proposed. In addition, we formally propose to subdivide the tentative class-level taxon ‘Anaerolineae’ into Anaerolineae classis nov. and Caldilineae classis nov. We also propose the subordinate taxa Anaerolineales ord. nov., Caldilineales ord. nov., Anaerolineaceae fam. nov. and Caldilineaceae fam. nov.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1442-1447 ◽  
Author(s):  
Hideyuki Tamaki ◽  
Yasuhiro Tanaka ◽  
Hiroaki Matsuzawa ◽  
Mizuho Muramatsu ◽  
Xian-Ying Meng ◽  
...  

A novel aerobic, chemoheterotrophic bacterium, strain YO-36T, isolated from the rhizoplane of an aquatic plant (a reed, Phragmites australis) inhabiting a freshwater lake in Japan, was morphologically, physiologically and phylogenetically characterized. Strain YO-36T was Gram-negative and ovoid to rod-shaped, and formed pinkish hard colonies on agar plates. Strain YO-36T grew at 20–40 °C with optimum growth at 30–35 °C, whilst no growth was observed at 15 °C or 45 °C. The pH range for growth was 5.5–8.5 with an optimum at pH 6.5. Strain YO-36T utilized a limited range of substrates, such as sucrose, gentiobiose, pectin, gellan gum and xanthan gum. The strain contained C16 : 0, C16 : 1, C14 : 0 and C15 : 0 as the major cellular fatty acids and menaquinone-12 as the respiratory quinone. The G+C content of the genomic DNA was 62.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YO-36T belonged to the candidate phylum OP10 comprised solely of environmental 16S rRNA gene clone sequences except for two strains, P488 and T49 isolated from geothermal soil in New Zealand; strain YO-36T showed less than 80 % sequence similarity to strains P488 and T47. Based on the phylogetic and phenotypic findings, a new genus and species, Armatimonas rosea gen. nov., sp. nov., is proposed for the isolate (type strain YO-36T  = NBRC 105658T  = DSM 23562T). In addition, a new bacterial phylum named Armatimonadetes phyl. nov. is proposed for the candidate phylum OP10 represented by A. rosea gen. nov., sp. nov. and Armatimonadaceae fam. nov., Armatimonadales ord. nov., and Armatimonadia classis nov.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3643 ◽  
Author(s):  
Qiaochu Liang ◽  
Takahiro Yamashita ◽  
Norihisa Matsuura ◽  
Ryoko Yamamoto-Ikemoto ◽  
Hiroshi Yokoyama

Bioelectrochemical system (BES)-based reactors have a limited range of use, especially in aerobic conditions, because these systems usually produce current from exoelectrogenic bacteria that are strictly anaerobic. However, some mixed cultures of bacteria in aerobic reactors can form surface biofilms that may produce anaerobic conditions suitable for exoelectrogenic bacteria to thrive. In this study, we combined a BES with an aerobic trickling filter (TF) reactor for wastewater treatment and found that the BES-TF setup could produce electricity with a coulombic efficiency of up to 15% from artificial wastewater, even under aerobic conditions. The microbial communities within biofilms formed at the anodes of BES-TF reactors were investigated using high throughput 16S rRNA gene sequencing. Efficiency of reduction in chemical oxygen demand and total nitrogen content of wastewater using this system was >97%. Bacterial community analysis showed that exoelectrogenic bacteria belonging to the genera Geobacter and Desulfuromonas were dominant within the biofilm coating the anode, whereas aerobic bacteria from the family Rhodocyclaceae were abundant on the surface of the biofilm. Based on our observations, we suggest that BES-TF reactors with biofilms containing aerobic bacteria and anaerobic exoelectrogenic bacteria on the anodes can function in aerobic environments.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4456-4461 ◽  
Author(s):  
Daria G. Zavarzina ◽  
Tatyana N. Zhilina ◽  
Boris B. Kuznetsov ◽  
Tatyana V. Kolganova ◽  
Georgy A. Osipov ◽  
...  

An obligately alkaliphilic, anaerobic, thermo- and halotolerant, spore-forming bacterium was isolated from sediments of soda lake Magadi (Kenya) and designated strain Z-1001T. Cells of strain Z-1001T were straight, Gram-positive rods, slowly motile. Strain Z-1001T was found to be an obligate anaerobe. It grew within a pH range from 7.5 to 10.7 with an optimum at 9.25–9.5 (at 40 °C), a temperature range from 20 to 57 °C with an optimum at 45–50 °C, and a NaCl concentration range from 0 to 1.55 M with an optimum at 1.2–1.4 M. Peptides, such as meat and yeast extracts, peptone and tryptone, were fermented by Z-1001T. Carbohydrates did not support growth. With yeast extract as an electron donor, strain Z-1001T reduced S 2 O 3 2 − , NO 3 − , AsO 4 3 − , Fe(III) citrate and anthraquinone-2,6-disulfonate (AQDS) as electron acceptors. The isolate was able to grow oligotrophically with a very small amount of yeast extract: 0.03 g l−1. The main fatty acids were C16 : 0, C16 : 1ω7c , C18 : 0 and C18 : 1ω9. The DNA G+C content of the isolate was 35.6 mol%. 16S rRNA gene sequence analysis showed that strain Z-1001T is a member of family Natranaerobiaceae , clustering with the type strain of Natranaerobius thermophilus (95.8–96.0 % sequence similarity). On the basis of physiological and phylogenetic data it is proposed that strain Z-1001T ( = DSM 24923T = VKM B-2666T) represents a novel genus and species, Natranaerobaculum magadiense gen. nov., sp. nov.


2001 ◽  
Vol 67 (12) ◽  
pp. 5740-5749 ◽  
Author(s):  
Yuji Sekiguchi ◽  
Hiroki Takahashi ◽  
Yoichi Kamagata ◽  
Akiyoshi Ohashi ◽  
Hideki Harada

ABSTRACT We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280–1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non-sulfur bacteria (GNSB) subdivision I, which contains a number of 16S rDNA clone sequences from various environmental samples but no cultured representatives. To investigate their function in the community and physiological traits, we attempted to isolate the yet-to-be-cultured microbes from the original granular sludge. The first attempt at isolation from the granules was, however, not successful. In the other thermophilic reactor that had been treating fried soybean curd-manufacturing wastewater, we found filamentous microorganisms to outgrow, resulting in the formation of projection-like structures on the surface of granules, making the granules look like sea urchins. 16S rDNA-cloning analysis combined with fluorescent in situ hybridization revealed that the projections were comprised of the uncultured filamentous cells affiliated with the GNSB subdivision I and Methanothermobacter-like cells and the very ends of the projections were comprised solely of the filamentous cells. By using the tip of the projection as the inoculum for primary enrichment, a thermophilic, strictly anaerobic, filamentous bacterium, designated strain UNI-1, was successfully isolated with a medium supplemented with sucrose and yeast extract. The strain was a very slow growing bacterium which is capable of utilizing only a limited range of carbohydrates in the presence of yeast extract and produced hydrogen from these substrates. The growth was found to be significantly stimulated when the strain was cocultured with a hydrogen-utilizing methanogen, Methanothermobacter thermautotrophicus, suggesting that the strain is a sugar-fermenting bacterium, the growth of which is dependent on hydrogen consumers in the granules.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2986-2991 ◽  
Author(s):  
Xiao-Li Su ◽  
Qi Tian ◽  
Jie Zhang ◽  
Xian-Zheng Yuan ◽  
Xiao-Shuang Shi ◽  
...  

A strictly anaerobic, mesophilic, carbohydrate-fermenting, hydrogen-producing bacterium, designated strain RL-CT, was isolated from a reed swamp in China. Cells were Gram-stain-negative, catalase-negative, non-spore-forming, non-motile rods measuring 0.7–1.0 µm in width and 3.0–8.0 µm in length. The optimum temperature for growth of strain RL-CT was 37 °C (range 25–40 °C) and pH 7.0–7.5 (range pH 5.7–8.0). The strain could grow fermentatively on yeast extract, tryptone, arabinose, glucose, galactose, mannose, maltose, lactose, glycogen, pectin and starch. The main end products of glucose fermentation were acetate, H2 and CO2. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required for growth; however, it stimulated growth slightly. Nitrate, sulfate, sulfite, thiosulfate, elemental sulfur and Fe(III) nitrilotriacetate were not reduced as terminal electron acceptors. Aesculin was hydrolysed but not gelatin. Indole and H2S were produced from yeast extract. The G+C content of the genomic DNA was 51.2 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The most abundant polar lipid of strain RL-CT was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured Blvii28 wastewater-sludge group (http://www.arb-silva.de/) in the family Rikenellaceae of the phylum Bacteroidetes, and shared low sequence similarities with the related species Alistipes shahii WAL 8301T (81.8 %), Rikenella microfusus ATCC 29728T (81.7 %) and Anaerocella delicata WN081T (80.9 %). On the basis of these data, a novel species in a new genus of the family Rikenellaceae is proposed, Acetobacteroides hydrogenigenes gen. nov., sp. nov. The type strain of the type species is RL-CT ( = JCM 17603T = DSM 24657T = CGMCC 1.5173T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1079-1084 ◽  
Author(s):  
Christopher D. Ogg ◽  
Anthony C. Greene ◽  
Bharat K. C. Patel

A strictly anaerobic, thermophilic bacterium, designated strain R270T, was isolated from microbial mats thriving in the thermal waters (66 °C) of a Great Artesian Basin bore (registered no. 17263) runoff channel. Cells of strain R270T were straight to slightly curved rods (3.50–6.00×0.75–1.00 μm) that stained Gram-positive, but possessed a Gram-negative cell-wall ultrastructure. Strain R270T grew optimally in tryptone-yeast extract-Casamino acids medium at 65 °C (growth temperature range between 50 and 70 °C) and at pH 7.0 (growth pH range between 6.0 and 9.0). In the presence of 0.02 and 0.10 % yeast extract, pyruvate and Casamino acids were the only substrates fermented from a wide spectrum of substrates tested. Fe(III), Mn(IV), thiosulfate and elemental sulfur were used as electron acceptors in the presence 0.2 % yeast extract, but not sulfate, sulfite, nitrate, nitrite or fumarate. Growth of strain R270T increased in the presence of Fe(III), which was reduced in the presence of peptone, tryptone, Casamino acids, amyl media, starch, pyruvate, H2 and CO2, but not in the presence of acetate, lactate, propionate, formate, benzoate, glycerol or ethanol. Growth and Fe(III) reduction were inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and 2 % NaCl (w/v). The DNA G+C content of strain R270T was 41±1 mol% (T m) and phylogenetic analysis of the 16S rRNA gene indicated that this isolate was closely related to Thermovenabulum ferriorganovorum DSM 14006T (similarity value of 96.1 %) within the family ‘Thermoanaerobacteraceae’, class ‘Clostridia’, phylum ‘Firmicutes’. On the basis of the phylogenetic distance separating the two, together with differences in a number of key phenotypic characteristics, strain R270T represents a novel species of the genus Thermovenabulum, for which the name Thermovenabulum gondwanense sp. nov. is proposed; the type strain is R270T (=KCTC 5616T=DSM 21133T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2907-2915 ◽  
Author(s):  
V. Lamprinou ◽  
M. Hernández-Mariné ◽  
T. Canals ◽  
K. Kormas ◽  
A. Economou-Amilli ◽  
...  

Caves have generally been found to host phototrophic micro-organisms from various taxonomic groups, with cyanobacteria comprising an important group that have adapted to these stable and highly specific environments. A polyphasic study based on aspects of classical morphology and molecular data revealed two new monospecific genera from fresh material of Greek and Spanish caves. Both taxa are characterized by obligatory true branching (T-type, V-type and false branching), the presence of heterocysts, and reproduction by hormocysts and akinetes. They shared some similarities in their morphological characteristics as revealed by light, scanning electron and transmission electron microscopy, but phylogenetic analysis based on 16S rRNA gene sequences showed that the two phylotypes were different (89.8 % similarity); this represents an example of shared morphology in genetically different strains of cave-adapted species. Phenotypic and genetic traits strongly support classification of the phylotypes as independent taxa in the order Stigonematales (the most differentiated and complicated group of cyanobacteria), family Loriellaceae Geitl 1925. Hence, the names Iphinoe spelaeobios Lamprinou and Pantazidou gen. nov., sp. nov. and Loriellopsis cavernicola Hernández-Mariné and Canals gen. nov., sp. nov. are proposed.


2007 ◽  
Vol 57 (7) ◽  
pp. 1612-1618 ◽  
Author(s):  
Elena V. Pikuta ◽  
Damien Marsic ◽  
Takashi Itoh ◽  
Asim K. Bej ◽  
Jane Tang ◽  
...  

A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20PT, was isolated from ‘black smoker’ chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2°N, 33.9°W). The cells of strain OGL-20PT have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0−8.5 (optimum pH 7.0), an NaCl concentration range of 1–5 % (w/v) (optimum 3 %) and a temperature range of 55–94 °C (optimum 83–85 °C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20PT is resistant to ampicillin, chloramphenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G+C content of the DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20PT is closely related to Thermococcus coalescens and related species, but no significant homology by DNA–DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20PT represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20PT (=JCM 12859T=DSM 14981T=ATCC BAA-394T).


Sign in / Sign up

Export Citation Format

Share Document