scholarly journals Characterization of six clinical isolates of Chimaeribacter gen. nov., a novel genus related to the Yersiniaceae family and the three species Chimaeribacter arupi sp. nov., Chimaeribacter coloradensis sp. nov, and Chimaeribacter californicus sp. nov.

2020 ◽  
Vol 70 (4) ◽  
pp. 2703-2712 ◽  
Author(s):  
Alessandro Rossi ◽  
Mark A. Fisher

Eight genetically related, Gram-negative bacterial strains, isolated from clinical specimens between 2012 and 2016, were submitted to arup Laboratories for species identification. The lack of species- or genus-level matches in curated 16S rRNA gene databases prompted us to undertake the polyphasic characterization of these so far undescribed organisms. Six isolates available for additional testing were oxidase negative, catalase positive, pleomorphic, Gram-negative rods displaying temperature-dependent motility and producing yellow-pigmented colonies with three distinct morphotypes: medium-sized shiny, large mucoid and agar-pitting. Biochemical reactions and sugar fermentation patterns were most similar to members of the genus Serratia . Fatty acid profiles were highly similar across all six organisms, with the major components being: C16 : 0; C17 : 0 cyclo; C14 : 0 3-OH/iso-C16 : 1 I; C18 : 1 ω7c; and C16 : 1 ω7c/C16 : 1 ω6c. Whole-genome comparisons and multi locus sequence analysis (using the coding genes atpD, rpoB, gyrB and infB) suggest that the strains here described constitute three individual species within a novel genus related to the family Yersiniaceae . We propose for this novel taxon the name Chimaeribacter gen. nov., referring to the presentation of multiple characteristics typical of distinct Enterobacterales genera within a single organism. Four isolates are representative of a single species: Chimaeribacter arupi sp. nov (2016-Iso1, 2016-Iso2, type strain 2016-Iso3T=DSM 110101T=ATCC TSD-180T and 2013-Iso5). The remaining two isolates constitute the novel species Chimaeribacter coloradensis sp. nov. (type strain 2016-Iso4T=DSM 110102T=ATCC TSD-182T) and Chimaeribacter californicus sp. nov. (type strain 2015-Iso6T=DSM 110100T=ATCC TSD-181T). Our work provides the first formal characterization of the genus Chimaeribacter and forms the basis to study its taxonomic diversity.

Author(s):  
Sára Szuróczki ◽  
Gorkhmaz Abbaszade ◽  
Dominika Buni ◽  
Károly Bóka ◽  
Peter Schumann ◽  
...  

Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23–33 °C in the presence of NaCl (1–2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae , for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 510-515 ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Cengiz Çavuşoğlu ◽  
Emanuele Borroni ◽  
Parvin Heidarieh ◽  
Orhan Kaya Koksalan ◽  
...  

Six strains of a rapidly growing scotochromogenic mycobacterium were isolated from pulmonary specimens of independent patients. Biochemical and cultural tests were not suitable for their identification. The mycolic acid pattern analysed by HPLC was different from that of any other mycobacterium. Genotypic characterization, targeting seven housekeeping genes, revealed the presence of microheterogeneity in all of them. Different species were more closely related to the test strains in various regions: the type strain of Mycobacterium moriokaense showed 99.0 % 16S rRNA gene sequence similarity, and 91.5–96.5 % similarity for the remaining six regions. The whole genome sequences of the proposed type strain and that of M. moriokaense presented an average nucleotide identity (ANI) of 82.9 %. Phylogenetic analysis produced poorly robust trees in most genes with the exception of rpoB and sodA where Mycobacterium flavescens and Mycobacterium novocastrense were the closest species. This phylogenetic relatedness was confirmed by the tree inferred from five concatenated genes, which was very robust. The polyphasic characterization of the test strains, supported by the ANI value, demonstrates that they belong to a previously unreported species, for which the name Mycobacterium celeriflavum sp. nov. is proposed. The type strain is AFPC-000207T ( = DSM 46765T = JCM 18439T).


Author(s):  
Marvin A. Altamia ◽  
J. Reuben Shipway ◽  
David Stein ◽  
Meghan A. Betcher ◽  
Jennifer M. Fung ◽  
...  

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter . The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5627-5633 ◽  
Author(s):  
Yong Li ◽  
Shengkun Wang ◽  
Ju-pu Chang ◽  
Dan-ran Bian ◽  
Li-min Guo ◽  
...  

Two Gram-stain-negative, aerobic, non-motile bacterial strains, 36D10-4-7T and 30C10-4-7T, were isolated from bark canker tissue of Populus × euramericana, respectively. 16S rRNA gene sequence analysis revealed that strain 36D10-4-7T shows 98.0 % sequence similarity to Sphingomonas adhaesiva DSM 7418T, and strain 30C10-4-7T shows highest sequence similarity to Sphingobacterium arenae H-12T (95.6 %). Average nucleotide identity analysis indicates that strain 36D10-4-7T is a novel member different from recognized species in the genus Sphingomonas . The main fatty acids and respiratory quinone detected in strain 36D10-4-7T are C18 : 1  ω7c and/or C18 : 1  ω6c and Q-10, respectively. The polar lipids are diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, aminolipid, phosphatidylethanolamine, sphingoglycolipid, two uncharacterized phospholipids and two uncharacterized lipids. For strain 30C10-4-7T, the major fatty acids and menaquinone are iso-C15 : 0, C16 : 1  ω7c and/or C16 : 1  ω6c and iso-C17 : 0 3-OH and MK-7, respectively. The polar lipid profile includes phosphatidylethanolamine, phospholipids, two aminophospholipids and six unidentified lipids. Based on phenotypic and genotypic characteristics, these two strains represent two novel species within the genera Sphingomonas and Sphingobacterium . The name Sphingomonas corticis sp. nov. (type strain 36D10-4-7T=CFCC 13112T=KCTC 52799T) and Sphingobacterium corticibacterium sp. nov. (type strain 30C10-4-7T=CFCC 13069T=KCTC 52797T) are proposed.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3760-3767 ◽  
Author(s):  
Min-Jung Kwak ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
Kwang Kyu Kim ◽  
Mi Kyung Eom ◽  
...  

Four Gram-stain-negative, aerobic, rod-shaped bacterial strains, MM-124, MM-126, NB-68 and NB-77, were isolated from the coastal seawater or a region with a bloom of sea sparkle around Geoje island in Korea. The sequence similarity values of the 16S rRNA gene between the isolates and Sulfitobacter mediterraneus DSM 12244T ranged from 97.7 to 98.2 %, and phylogenetic relationships suggested that they belong to a phylogenetic branch that includes the genera Sulfitobacter and Roseobacter . The isoprenoid quinone of all three novel strains was ubiquinone-10 and the major fatty acid was cis-vaccenic acid, as in other species of the genus Sulfitobacter . However, there were several differences in the morphological, physiological and biochemical characteristics among the four strains and the reference species of the genus Sulfitobacter . Moreover, the average nucleotide identity values between the three sequenced isolates and the reference strains were below 76.33, indicating that genomic variation exists between the isolates and reference strains. Chemotaxonomic characteristics together with phylogenetic affiliations and genomic distances illustrate that strains MM-124, NB-68 and NB-77 represent novel species of the genus Sulfitobacter , for which the names Sulfitobacter geojensis sp. nov. (type strain MM-124T = KCTC 32124T = JCM 18835T), Sulfitobacter noctilucae sp. nov. (type strain NB-68T = KCTC 32122T = JCM 18833T) and Sulfitobacter noctilucicola sp. nov. (type strain NB-77T = KCTC 32123T = JCM 18834T) are proposed.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3494-3500 ◽  
Author(s):  
Seong Chan Park ◽  
Yeoung Min Hwang ◽  
Ji Hee Lee ◽  
Keun Sik Baik ◽  
Chi Nam Seong

Two yellow-pigmented, rod-shaped, non-motile, Gram-reaction-negative and aerobic bacterial strains, designated KYW560T and KYW563T, were isolated from seawater collected from Gwangyang Bay, Republic of Korea. The isolates required sea salts for growth. Flexirubin-type pigments were absent. The common major cellular fatty acids (>5 % of total) of the two strains were C16 : 0, C18 : 0, iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). Strain KYW560T also contained iso-C15 : 0 3-OH and C20 : 1ω9c as major fatty acids. The main polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. The predominant isoprenoid quinone was MK-6. The DNA G+C contents of strains KYW560T and KYW563T were 41.0±0.7 and 38.3±0.4 mol% (mean±sd of three determinations), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates belonged to the family Flavobacteriaceae , and were related to the genus Algibacter . Based on data from this taxonomic study using a polyphasic approach, it is proposed that the isolates represent novel species of the genus Algibacter , for which the names Algibacter agarivorans sp. nov. (type strain, KYW560T = KCTC 23855T = JCM 18285T) and Algibacter agarilyticus sp. nov. (type strain, KYW563T = KCTC 23857T = JCM 18275T) are proposed. Reclassification of Marinivirga aestuarii as Algibacter aestuarii comb. nov. and emended description of the genus Algibacter are also proposed.


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2451-2456 ◽  
Author(s):  
Sandra Denman ◽  
Carrie Brady ◽  
Susan Kirk ◽  
Ilse Cleenwerck ◽  
Stephanus Venter ◽  
...  

A group of nine Gram-negative staining, facultatively anaerobic bacterial strains isolated from native oak trees displaying symptoms of acute oak decline (AOD) in the UK were investigated using a polyphasic approach. 16S rRNA gene sequencing and phylogenetic analysis revealed that these isolates form a distinct lineage within the genus Brenneria , family Enterobacteriaceae , and are most closely related to Brenneria rubrifaciens (97.6 % sequence similarity to the type strain). Multilocus sequence analysis based on four housekeeping genes (gyrB, rpoB, infB and atpD) confirmed their position within the genus Brenneria , while DNA–DNA hybridization indicated that the isolates belong to a single taxon. The isolates can be differentiated phenotypically from their closest phylogenetic neighbours. The phylogenetic and phenotypic data demonstrate that these isolates from oak with symptoms of AOD represent a novel species in the genus Brenneria , for which the name Brenneria goodwinii sp. nov. (type strain FRB 141T  = R-43656T  = BCC 845T  = LMG 26270T  = NCPPB 4484T) is proposed.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 484-489 ◽  
Author(s):  
Hangsak Huy ◽  
Long Jin ◽  
Young-Ki Lee ◽  
Keun Chul Lee ◽  
Jung-Sook Lee ◽  
...  

A Gram-negative, non-motile, non-spore-forming and rod-shaped bacterial strain, CH15-1T, was isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria. Strain CH15-1T grew optimally at pH 7.0 and 30 °C. A phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain CH15-1T belongs to the genus Arenimonas with the similarity range from 92.6–97.4 % and is closely related to Arenimonas oryziterrae YC6267T (97.4 %), Arenimonas composti TR7-09T (95.4 %), Arenimonas metalli CF5-1T (94.7 %), Arenimonas malthae CC-JY-1T (94.6 %) and Arenimonas donghaensis HO3-R19T (92.6 %). However, the DNA–DNA hybridization between strain CH15-1T and the closest strain, Arenimonas oryziterrae YC6267T, was 8.9–12.9 %. The DNA G+C content was 63.9 mol% compared to A. oryziterrae YC626T, 65.8 mol%. Strain CH15-1T included Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. The major fatty acids (>5 %) were iso-C15 : 0, iso-C16 : 0, iso-C14 : 0, iso-C11 : 0 3-OH, iso-C17 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl). On the basis of phylogenetic, phenotypic and genetic data, strain CH15-1T was classified in the genus Arenimonas as a member of a novel species, for which the name Arenimonas daechungensis sp. nov. is proposed. The type strain is CH15-1T ( = KCTC 23553T = DSM 24763T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2032-2038 ◽  
Author(s):  
Nozomi Tazato ◽  
Miyuki Nishijima ◽  
Yutaka Handa ◽  
Rika Kigawa ◽  
Chie Sano ◽  
...  

Six Gram-negative, rod-shaped, non-spore-forming bacterial strains were isolated from small holes on plaster walls of the stone chamber interior of the Kitora Tumulus in Asuka village, Nara Prefecture, Japan. These were investigated by means of a polyphasic approach. All the isolates were strictly aerobic and motile by peritrichous flagella. Phylogenetic trees generated based on 16S rRNA gene sequences identified two novel lineages (comprising five isolates and one isolate, respectively) within the genus Gluconacetobacter . The isolates were characterized by having Q-10 as the major ubiquinone system and C18 : 1ω7c (58.7–63.1 % of the total) as the predominant fatty acid. DNA–DNA hybridization experiments endorsed the species rank for the two lineages, for which the names Gluconacetobacter tumulicola sp. nov. (type strain K5929-2-1bT = JCM 17774T = NCIMB 14760T) and Gluconacetobacter asukensis sp. nov. (type strain K8617-1-1bT = JCM 17772T = NCIMB 14759T) are proposed.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3375-3383 ◽  
Author(s):  
Hatsumi Shiratori-Takano ◽  
Kae Akita ◽  
Kazune Yamada ◽  
Takashi Itoh ◽  
Takafumi Sugihara ◽  
...  

Three novel moderately anaerobic, thermophilic, rod-shaped bacterial strains, KY38T, KY46T and KA13T, were isolated from shellfish collected on the Pacific coastline of Enoshima, Japan. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these bacteria belong to the genus Symbiobacterium , sharing sequence similarities of 97.8 % (KY38T), 96.4 % (KY46T) and 93.3 % (KA13T) with the type strain of Symbiobacterium thermophilum , the only species of the genus with a validly published name. These isolates reduced nitrate and grew optimally at 55–60 °C. Strains KY38T and KA13T formed endospore-like structures in the terminal or subterminal part of their cells at low frequencies. Genomic DNA G+C contents were 68.8 (KY38T), 67.2 (KY46T) and 67.1 (KA13T) mol%. The isolates all presented the predominant menaquinone MK-6, major fatty acids iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the major polar lipids phosphatidylglycerol, phosphatidylethanolamine and unknown glycol-containing phospholipids. On the basis of their morphological, physiological and phylogenetic properties, strains KY38T, KY46T and KA13T represent three novel species, for which the names Symbiobacterium ostreiconchae sp. nov. (type strain KY38T = DSM 27624T = KCTC 4567T = JCM 15048T), Symbiobacterium turbinis sp. nov. (type strain KY46T = DSM 27625T = KCTC 4568T = JCM 15996T) and Symbiobacterium terraclitae sp. nov. (type strain KA13T = DSM 27138T = KCTC 4569T = JCM 15997T) are proposed. An emended description of the genus Symbiobacterium is also presented. The phylogenetic distinctiveness of the genus Symbiobacterium indicates its affiliation with a novel family, for which the name Symbiobacteriaceae fam. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document