Ruminococcoides bili gen. nov., sp. nov., a bile-resistant bacterium from human bile with autolytic behavior

Author(s):  
Natalia Molinero ◽  
Elena Conti ◽  
Borja Sánchez ◽  
Alan W. Walker ◽  
Abelardo Margolles ◽  
...  

A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002T, belonging to the family Ruminococcaceae , was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that Ruminococcus bromii was the phylogenetically closest related species to the novel strain IPLA60002T, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut R. bromii strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002T is phylogenetically distinct from other species within the genus Ruminococcus . Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002T strain isolated from human bile be given the name Ruminococcoides bili gen. nov., sp. nov., within the new proposed genus Ruminococcoides and the family Ruminococcaceae . Strain IPLA60002T (=DSM 110008T=LMG 31505T) is proposed as the type strain of Ruminococcoides bili.

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2986-2991 ◽  
Author(s):  
Xiao-Li Su ◽  
Qi Tian ◽  
Jie Zhang ◽  
Xian-Zheng Yuan ◽  
Xiao-Shuang Shi ◽  
...  

A strictly anaerobic, mesophilic, carbohydrate-fermenting, hydrogen-producing bacterium, designated strain RL-CT, was isolated from a reed swamp in China. Cells were Gram-stain-negative, catalase-negative, non-spore-forming, non-motile rods measuring 0.7–1.0 µm in width and 3.0–8.0 µm in length. The optimum temperature for growth of strain RL-CT was 37 °C (range 25–40 °C) and pH 7.0–7.5 (range pH 5.7–8.0). The strain could grow fermentatively on yeast extract, tryptone, arabinose, glucose, galactose, mannose, maltose, lactose, glycogen, pectin and starch. The main end products of glucose fermentation were acetate, H2 and CO2. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required for growth; however, it stimulated growth slightly. Nitrate, sulfate, sulfite, thiosulfate, elemental sulfur and Fe(III) nitrilotriacetate were not reduced as terminal electron acceptors. Aesculin was hydrolysed but not gelatin. Indole and H2S were produced from yeast extract. The G+C content of the genomic DNA was 51.2 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The most abundant polar lipid of strain RL-CT was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured Blvii28 wastewater-sludge group (http://www.arb-silva.de/) in the family Rikenellaceae of the phylum Bacteroidetes, and shared low sequence similarities with the related species Alistipes shahii WAL 8301T (81.8 %), Rikenella microfusus ATCC 29728T (81.7 %) and Anaerocella delicata WN081T (80.9 %). On the basis of these data, a novel species in a new genus of the family Rikenellaceae is proposed, Acetobacteroides hydrogenigenes gen. nov., sp. nov. The type strain of the type species is RL-CT ( = JCM 17603T = DSM 24657T = CGMCC 1.5173T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Lei Zhang ◽  
Xihui Shen ◽  
Yingbao Liu ◽  
Shiqing Li

A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10T, was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30–37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10T was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311T (90.2 % sequence similarity), Marivirga sericea LMG 13021T (89.2 %), Cesiribacter andamanensis AMV16T (89.1 %) and Marivirga tractuosa DSM 4126T (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10T should be classified as a novel species of a new genus in the family Flammeovirgaceae , for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10T ( = CCTCC AB 208222T = KCTC 23983T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 109-113 ◽  
Author(s):  
Zhao-Ming Gao ◽  
Xin Liu ◽  
Xi-Ying Zhang ◽  
Ling-Wei Ruan

A moderately thermophilic and strictly anaerobic bacterium, designated HS1T, was isolated from offshore hot spring sediment in Xiamen, China. Cells were Gram-negative, catalase-positive, oxidase-negative, slender and flexible rods without flagella. The strain could grow at 35–55 °C (optimum at 50 °C) and in 1–8 % NaCl (w/v; optimum 2–4 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HS1T was affiliated with the family Marinilabiliaceae and shared a distant relationship with the previously described genera. The isolate was most closely related to Anaerophaga thermohalophila Fru22T with 16S rRNA gene sequence similarity of 92.4 %, followed by the other members of the family Marinilabiliaceae with 88.7–91.1 % similarity. The dominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant quinone was MK-7. The major polar lipids were phosphatidylethanolamine (PE) and an unknown polar lipid. The genomic DNA G+C content was 38.7 mol%. Besides the phylogenetically distant relationship, strain HS1T was obviously distinguished from the most closely related genera in several phenotypic properties including colony colour and pigment production, optimal temperature, optimal NaCl, relation to O2, bicarbonate/carbonate requirement, catalase activity, nitrate reduction, fermentation products and cellular fatty acid profile. Based on the phenotypic and phylogenetic data, strain HS1T represents a novel species of a new genus, for which the name Thermophagus xiamenensis gen. nov., sp. nov. is proposed. The type strain of the type species is HS1T ( = DSM 19012T = CGMCCC 1.5071T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1214-1218 ◽  
Author(s):  
Julia Downes ◽  
Floyd E. Dewhirst ◽  
Anne C. R. Tanner ◽  
William G. Wade

Five strains of anaerobic, Gram-negative bacilli isolated from the human oral cavity were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group. Phylogenetic analysis of full-length 16S rRNA gene sequences showed that these strains represented a novel group within the family Prevotellaceae , and the most closely related species was Prevotella tannerae . P. tannerae and the novel taxon are deeply branched from the genus Prevotella , with sequence identities to the type strain of the type species of Prevotella , Prevotella melaninogenica , of 82.2 and 85.6 %, respectively. The novel genus Alloprevotella gen. nov. is proposed to accommodate the novel species Alloprevotella rava gen. nov., sp. nov. and the previously named Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. The type species is Alloprevotella tannerae. The type strain of Alloprevotella rava is 81/4-12T ( = DSM 22548T  = CCUG 58091T) and the type strain of Alloprevotella tannerae is ATCC 51259T  = CCUG 34292T  = CIP 104476T  = NCTC 13073T. Alloprevotella rava is weakly to moderately saccharolytic and produces moderate amounts of acetic acid and major amounts of succinic acid as end products of fermentation. Strains are sensitive to 20 % bile and hydrolyse gelatin. The principal cellular long-chain fatty acids are anteiso-C15 : 0, iso-C15 : 0, C16 : 0, iso-C17 : 0 and iso-C17 : 0 3-OH. The G+C content of the DNA of the type strain is 47 mol%.


2020 ◽  
Vol 70 (5) ◽  
pp. 3340-3347 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Peter Schumann ◽  
Gwanpil Song

A novel Gram-stain-positive, actinobacterial strain, designated C5-26T, was isolated from soil from a natural cave in Jeju, Republic of Korea, and its taxonomic position was investigated using a polyphasic approach. The organism was aerobic, and cells were non-spore-forming, non-motile cocci that occurred singly, in pairs, in triplets, in tetrads, in short chains or in irregular clusters. Colonies of the cells were circular, convex, entire and white. The peptidoglycan type was A4α with an l-Ser–d-Asp interpeptide bridge. The whole-cell sugars comprised glucose, rhamnose, mannose, arabinose, galactose and ribose. The major menaquinone was MK-8(H4). The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The major fatty acids were iso-C16 : 0 and iso-C16 : 1 h. The size of the draft genome was 5.32 Mbp with depth of coverage of 161×. The G+C content of the genomic DNA was 67.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel isolate belonged to the family Dermacoccaceae and formed a distinct subcluster at the base of the radiation of the genus Luteipulveratus . Highest sequence similarities of the novel isolate were found to the type strains of Luteipulveratus halotolerans (96.2 %), Branchiibius hedensis (95.4 %), Luteipulveratus mongoliensis (95.4 %) and Branchiibius cervicis (95.3 %). The whole genome-based phylogeny supported the novelty of the isolate at the genus level in the family Dermacoccaceae . On the basis of data from this polyphasic study, strain C5-26T (=KCTC 39632T=DSM 108676T) represents a novel species of a new genus in the family Dermacoccaceae , for which the name Leekyejoonella antrihumi gen. nov., sp. nov. is proposed.


2020 ◽  
Vol 70 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Annemarie Siebert ◽  
Christopher Huptas ◽  
Mareike Wenning ◽  
Siegfried Scherer ◽  
Etienne V. Doll

Three strains of a Gram-stain-positive, catalase-negative, facultative anaerobic, and coccoid species were isolated from German bulk tank milk. Phylogenetic analyses based on the 16S rRNA gene sequences indicated that the three strains (WS4937T, WS4759 and WS5303) constitute an independent phylogenetic lineage within the family Aerococcaceae with Facklamia hominis CCUG 36813T (93.7–94.1 %) and Eremococcus coleocola M1831/95/2T (93.5 %) as most closely related type species. The unclassified strains demonstrated variable growth with 6.5 % (w/v) NaCl and tolerated pH 6.5–9.5. Growth was observed from 12 to 39 °C. Their cell-wall peptidoglycan belongs to the A1α type (l-Lys-direct) consisting of alanine, glutamic acid and lysine. The predominant fatty acids were C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c and in the polar lipids profile three glycolipids, a phospholipid, phosphatidylglycerol, phosphoglycolipid and diphosphatidylglycerol were found. The G+C content of strain WS4937T was 37.4 mol% with a genome size of ~3.0 Mb. Based on phylogenetic, phylogenomic and biochemical characterizations, the isolates can be demarcated from all other genera of the family Aerococcaceae and, therefore, the novel genus Fundicoccus gen. nov. is proposed. The type species of the novel genus is Fundicoccus ignavus gen. nov., sp. nov. WS4937T (=DSM 109652T=LMG 31441T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3040-3045 ◽  
Author(s):  
Soo-Jin Kim ◽  
Joo-Hyeon Park ◽  
Jun-Muk Lim ◽  
Jae-Hyung Ahn ◽  
Rangasamy Anandham ◽  
...  

A Gram-stain-negative, short rod-shaped, non-flagellated, yellow bacterium, designated strain 5GHs7-2T, was isolated from a greenhouse soil sample in South Korea. 16S rRNA gene sequence analysis of strain 5GHs7-2T indicated that the isolate belonged to the family Chitinophagaceae , and exhibited the highest sequence similarities with members of the genera Terrimonas (89.2–92.6 %), Sediminibacterium (90.8–91.4 %) and Chitinophaga (89.2–91.7 %), Filimonas lacunae YT21T (91.7 %), members of the genus Segetibacter (90.2–91.6 %), Parasegetibacter luojiensis RHYL-37T (90.9 %) and Flavihumibacter petaseus T41T (91.2 %). Flexirubin-type pigments were present. The major cellular fatty acids of the novel strain were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The polar lipid profile consisted of a large amount of phosphatidylethanolamine, and moderate and small amounts of several unknown aminolipids and lipids. The only respiratory quinone of strain 5GHs7-2T was MK-7, and the DNA G+C content was 47.6 mol%. On the basis of the evidence presented, it is concluded that strain 5GHs7-2T represents a novel species of a new genus in the family Chitinophagaceae , for which the name Parafilimonas terrae gen. nov., sp. nov. is proposed. The type strain of the type species is 5GHs7-2T ( = KACC 17343T = DSM 28286T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1760-1765 ◽  
Author(s):  
Martha Helena Ramírez-Bahena ◽  
Carmen Tejedor ◽  
Isidro Martín ◽  
Encarna Velázquez ◽  
Alvaro Peix

A bacterial strain designated M1MS02T was isolated from a surface-sterilized nodule of Medicago sativa in Zamora (Spain). The 16S rRNA gene sequence of this strain showed 96.5 and 96.2 % similarity, respectively, with respect to Gluconacetobacter liquefaciens IFO 12388T and Granulibacter bethesdensis CGDNIH1T from the family Acetobacteraceae . The novel isolate was a Gram-stain-negative, non-sporulating, aerobic coccoid to rod-shaped bacterium that was motile by a subpolar flagellum. The major fatty acid was C18 : 1ω7c and the major ubiquinone was Q-10. The lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, three aminolipids, four glycolipids, two phospholipids and one lipid. Strain M1MS02T was catalase-positive and oxidase- and urease-negative. Acetate and lactate were not oxidized. Acetic acid was produced from ethanol in culture media supplemented with 2 % CaCO3. Ammonium sulphate was assimilated in glucose medium. The strain produced dihydroxyacetone from glycerol. Phylogenetic and phenotypic analyses commonly used to differentiate genera within the family Acetobacteraceae showed that strain M1MS02T should be classified as representing a novel species of a new genus within this family, for which the name Endobacter medicaginis gen. nov., sp. nov. is proposed. The type strain of the type species is M1MS02T ( = LMG 26838T = CECT 8088T). To our knowledge, this is the first report of a member of the Acetobacteraceae occurring as a legume nodule endophyte.


Author(s):  
Ling-Fei Lu ◽  
Yang Yang ◽  
Li-Juan Chai ◽  
Zhen-Ming Lu ◽  
Li-Qiang Zhang ◽  
...  

A novel Gram-positive, non-motile, non-flagellated, strictly anaerobic, non-spore-forming and dumbbell-shaped, coccoid- or chain-shaped bacterium, designated strain LZLJ-3T, was isolated from a mud fermentation cellar which has been used for the production of Chinese strong-flavour liquor for over 100 years. Strain LZLJ-3T grew at 20–40 °C (optimum, 37 °C), at pH 6.0–8.0 (optimum, pH 8.0) and with NaCl concentrations up to 1 % (w/v; optimum, 0 %). Phylogenetic trees established based on 16S rRNA gene sequences showed that strain LZLJ-3T belonged to the genus Blautia of the family Lachnospiraceae, with the highest sequence similarity to Blautia stercoris GAM6-1T (91.7 %) and Blautia faecicola KGMB01111T (91.7 %). Comparative genome analysis showed that the orthologous average nucleotide identity (OrthoANI) and genome-to-genome distance (GGD) values between strain LZLJ-3T and B. stercoris GAM6-1T were respectively 69.1 and 22.9 %; the OrthoANI and GGD values between strain LZLJ-3T and B. faecicola KGMB01111T were respectively 70.86 and 36 % . The DNA G+C content of strain LZLJ-3T genome was 42.1 mol%. The predominant celluar fatty acids (>10 %) of strain LZLJ-3T were C16 : 0 FAME (27.9 %), C14 : 0 FAME (17.6 %) and C16 : 0 DMA (13.0 %). Arabinose, glucose and maltose could be utilized by strain LZLJ-3T as sole carbon sources for growth, with weak utilization of raffinose and l-fucose. API ZYM analysis gave positive reactions with α-galactosidase, β-galactosidase, α-glucosidase and β-glucosidase. The major end product of glucose fermentation was acetic acid. Based on the results of phenotypic, genotypic and phylogenetic analyses, strain LZLJ-3T is considered to represent a novel species of Blautia , for which the name Blautia liquoris sp. nov. is proposed. The type strain is LZLJ-3T (=KCTC 25163T=CGMCC 1.5299T=JCM 34225T).


Sign in / Sign up

Export Citation Format

Share Document