scholarly journals Molecular characterization of serologically atypical provisional serovars of Shigella isolates from Kolkata, India

2014 ◽  
Vol 63 (12) ◽  
pp. 1696-1703 ◽  
Author(s):  
Shanta Dutta ◽  
Priyanka Jain ◽  
Suman Nandy ◽  
Shigeru Matsushita ◽  
Shin-ichi Yoshida

During 2000–2004, 13 Shigella strains that were untypable by commercially available antisera were isolated from children <5 years of age with acute diarrhoea in Kolkata. These strains were subsequently identified as Shigella dysenteriae provisional serovar 204/96 (n = 3), Shigella dysenteriae provisional serovar E23507 (n = 1), Shigella dysenteriae provisional serovar I9809-73 (n = 1), Shigella dysenteriae provisional serovar 93-119 (n = 1), Shigella flexneri provisional serovar 88-893 (n = 6) and Shigella boydii provisional serovar E16553 (n = 1). In this study, characterization of those provisional serovars of Shigella was performed with respect to their antimicrobial resistance, plasmids, virulence genes and PFGE profiles. The drug resistant strains (n = 10) of Shigella identified in this study possessed various antibiotic resistance genetic markers like catA (for chloramphenicol resistance); tetA and tetB (for tetracycline resistance); dfrA1 and sul2 (for co-trimoxazole resistance); aadA1, strA and strB (for streptomycin resistance) and blaOXA-1 (for ampicillin resistance). Class 1 and/or class 2 integrons were present in eight resistant strains. Three study strains were pan-susceptible. A single mutation in the gyrA gene (serine to leucine at codon 83) was present in four quinolone resistant strains. The virulence gene ipaH (invasion plasmid antigen H) was uniformly present in all strains in this study, but the stx (Shiga toxin) and set1 (Shigella enterotoxin 1) genes were absent. Other virulence genes like ial (invasion associated locus) and sen (Shigella enterotoxin 2) were occasionally present. A large plasmid of 212 kb and of incompatibility type IncFIIA was present in the majority of the strains (n = 10) and diversity was noticed in the smaller plasmid profiles of these strains even within the same provisional serovars. PFGE profile analysis showed the presence of multiple unrelated clones among the isolates of provisional Shigella serovars. To the best of our knowledge, this is the first report on the phenotypic and molecular characterization of provisional serovars of Shigella isolates from Kolkata, India.

2020 ◽  
Author(s):  
Zhen Zhu ◽  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Methods and Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the five virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), and sen (28.95%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) of S. dysenteriae isolates were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of QRDR of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the PMQR determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2020 ◽  
Author(s):  
Zhen Zhu ◽  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the five virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), and sen (28.95%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) of S. dysenteriae isolates were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of QRDR of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the PMQR determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83 → Leu and Asp87 → Asn) and parC (Ser80 → Ile and Ser83 → Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83 → Leu) and parC point mutation (Ser83 → Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac (6′)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2020 ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2020 ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2020 ◽  
Author(s):  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Guanhui Liu ◽  
Xuzheng Zhou ◽  
...  

Abstract Background: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B. According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83→Leu and Asp87→Asn) and parC (Ser80→Ile and Ser83→Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83→Leu) and parC point mutation (Ser83→Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac(6’)-Ib-cr gene but negative for qepA, except SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


2021 ◽  
Vol 6 (2) ◽  
pp. 63
Author(s):  
Abel F.N.D. Phiri ◽  
Akebe Luther King Abia ◽  
Daniel Gyamfi Amoako ◽  
Rajab Mkakosya ◽  
Arnfinn Sundsfjord ◽  
...  

Although numerous studies have investigated diarrhoea aetiology in many sub-Saharan African countries, recent data on Shigella species’ involvement in community-acquired acute diarrhoea (CA-AD) in Malawi are scarce. This study investigated the incidence, antibiotic susceptibility profile, genotypic characteristics, and clonal relationships of Shigella flexneri among 243 patients presenting with acute diarrhoea at a District Hospital in Lilongwe, Malawi. Shigella spp. were isolated and identified using standard microbiological and serological methods and confirmed by identifying the ipaH gene using real-time polymerase chain reaction. The isolates’ antibiotic susceptibility to 20 antibiotics was determined using the VITEK 2 system according to EUCAST guidelines. Genes conferring resistance to sulfamethoxazole (sul1, sul2 and sul3), trimethoprim (dfrA1, dfrA12 and dfrA17) and ampicillin (oxa-1 and oxa-2), and virulence genes (ipaBCD, sat, ial, virA, sen, set1A and set1B) were detected by real-time PCR. Clonal relatedness was assessed using ERIC-PCR. Thirty-four Shigella flexneri isolates were isolated (an overall incidence of 14.0%). All the isolates were fully resistant to sulfamethoxazole/trimethoprim (100%) and ampicillin (100%) but susceptible to the other antibiotics tested. The sul1 (79%), sul2 (79%), sul3 (47%), dfrA12 (71%) and dfrA17 (56%) sulfonamide and trimethoprim resistance genes were identified; Oxa-1, oxa-2 and dfrA1 were not detected. The virulence genes ipaBCD (85%), sat (85%), ial (82%), virA (76%), sen (71%), stx (71%), set1A (26%) and set1B (18%) were detected. ERIC-PCR profiling revealed that the Shigella isolates were genetically distinct and clonally unrelated, indicating the potential involvement of genetically distinct S. flexneri in CA-AD in Malawi. The high percentage resistance to ampicillin and sulfamethoxazole/trimethoprim and the presence of several virulence determinants in these isolates emphasises a need for continuous molecular surveillance studies to inform preventive measures and management of Shigella-associated diarrhoeal infections in Malawi.


2018 ◽  
Vol 48 (12) ◽  
Author(s):  
Carolina Pantuzza Ramos ◽  
Rafael Gariglio Clark Xavier ◽  
Carlos Augusto Gomes Leal ◽  
Elias Jorge Facury Filho ◽  
Antonio Ultimo de Carvalho ◽  
...  

ABSTRACT: The present study aimed to describe and characterize, for the first time, two outbreaks of salmonellosis caused by Salmonella Ndolo in foals and calves in Brazil and compare the isolated strains with S. Ndolo previously identified in asymptomatic reptiles. The affected calves and foals presented fever, lethargy, and profuse diarrhea. Isolated strains were subjected to antimicrobial susceptibility testing, characterized according to virulence genes, and fingerprinted by ERIC-PCR. Salmonella Ndolo was identified in fecal samples from two foals and four calves. One isolate from a calf was resistant to amoxicillin/clavulanic acid, trimethoprim/sulfamethoxazole, and florfenicol. Strains from two other calves were resistant to oxytetracycline. All virulence genes tested were present in the isolates, and two major clusters of closely related strains were identified by ERIC-PCR, each per outbreak. This is the first report of Salmonella Ndolo infection in domestic and symptomatic animals. Previously, this serovar had been identified only in human infections. The presence of relevant virulence genes in all Salmonella Ndolo isolates and the detection of antimicrobial multi-resistant strains highlighted the importance of monitoring serovars associated with salmonellosis in domestic animals.


Sign in / Sign up

Export Citation Format

Share Document