scholarly journals A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics

2020 ◽  
Vol 6 (8) ◽  
Author(s):  
Martinique Frentrup ◽  
Zhemin Zhou ◽  
Matthias Steglich ◽  
Jan P. Meier-Kolthoff ◽  
Markus Göker ◽  
...  

Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10−4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile .

2019 ◽  
Vol 5 (7) ◽  
Author(s):  
Charles H. D. Williamson ◽  
Nathan E. Stone ◽  
Amalee E. Nunnally ◽  
Heidie M. Hornstra ◽  
David M. Wagner ◽  
...  

Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.


2019 ◽  
Author(s):  
Martinique Frentrup ◽  
Zhemin Zhou ◽  
Matthias Steglich ◽  
Jan P. Meier-Kolthoff ◽  
Markus Göker ◽  
...  

AbstractClostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce EnteroBase, a publicly accessible database (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that the identification of highly related genomes is 89% consistent between cgMLST and single-nucleotide polymorphisms. EnteroBase currently contains 13,515 quality-controlled genomes which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. Hierarchical clustering can be used to identify populations of C. difficile at all epidemiological levels, from recent transmission chains through to pandemic and endemic strains, and is largely compatible with prior ribotyping. Hierarchical clustering thus enables comparisons to earlier surveillance data and will facilitate communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.


Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


Author(s):  
Nay C. Dia ◽  
Johan Van Vaerenbergh ◽  
Cinzia Van Malderghem ◽  
Jochen Blom ◽  
Theo H. M. Smits ◽  
...  

This paper describes a novel species isolated in 2011 and 2012 from nursery-grown Hydrangea arborescens cultivars in Flanders, Belgium. After 4 days at 28 °C, the strains yielded yellow, round, convex and mucoid colonies. Pathogenicity of the strains was confirmed on its isolation host, as well as on Hydrangea quercifolia. Analysis using MALDI-TOF MS identified the Hydrangea strains as belonging to the genus Xanthomonas but excluded them from the species Xanthomonas hortorum . A phylogenetic tree based on gyrB confirmed the close relation to X. hortorum . Three fatty acids were dominant in the Hydrangea isolates: anteiso-C15 : 0, iso-C15 : 0 and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c). Unlike X. hortorum pathovars, the Hydrangea strains were unable to grow in the presence of lithium chloride and could only weakly utilize d-fructose-6-PO4 and glucuronamide. Phylogenetic characterization based on multilocus sequence analysis and phylogenomic characterization revealed that the strains are close to, yet distinct from, X. hortorum . The genome sequences of the strains had average nucleotide identity values ranging from 94.35–95.19 % and in silico DNA–DNA hybridization values ranging from 55.70 to 59.40 % to genomes of the X. hortorum pathovars. A genomics-based loop-mediated isothermal amplification assay was developed which was specific to the Hydrangea strains for its early detection. A novel species, Xanthomonas hydrangeae sp. nov., is proposed with strain LMG 31884T (=CCOS 1956T) as the type strain.


2020 ◽  
Vol 70 (11) ◽  
pp. 5753-5798 ◽  
Author(s):  
Radhey S. Gupta ◽  
Sudip Patel ◽  
Navneet Saini ◽  
Shu Chen

To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium . The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer ‘ Bacillus kyonggiensi s’ to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis ) or the Cereus clade (containing B. anthracis and B. cereus ). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.


2020 ◽  
Vol 6 (9) ◽  
Author(s):  
Scott Van Nguyen ◽  
Dechamma Mundanda Muthappa ◽  
Athmanya K. Eshwar ◽  
James F. Buckley ◽  
Brenda P. Murphy ◽  
...  

Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica . This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica . The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICE Yh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica .


2020 ◽  
Vol 70 (5) ◽  
pp. 3547-3552 ◽  
Author(s):  
Mari Tohya ◽  
Shin Watanabe ◽  
Tatsuya Tada ◽  
Htay Htay Tin ◽  
Teruo Kirikae

This study was conducted to clarify the taxonomic status of the species Pseudomonas fuscovaginae and Pseudomonas shirazica . Whole genome sequences for the type strains of P. fuscovaginae and P. shirazica were compared against the closely related type strains of the Pseudomonas putida group and the Pseudomonas fluorescens group species. Average nucleotide identity and digital DNA–DNA hybridization values between P. fuscovaginae LMG 2158T and Pseudomonas asplenii ATCC 23835T were 98.4 and 85.5 %, and between P. shirazica VM14T and Pseudomonas asiatica RYU5T were 99.3 and 95.3 %. These values were greater than recognized thresholds for bacterial species delineation, indicating that they belong to the same genomospecies, respectively. Therefore, P. fuscovaginae and P. shirazica should be reclassified as later heterotypic synonyms of P. asplenii and P. asiatica , respectively.


2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Yuta Okada ◽  
Shu Okugawa ◽  
Mahoko Ikeda ◽  
Tatsuya Kobayashi ◽  
Ryoichi Saito ◽  
...  

Quorum sensing is known to regulate bacterial virulence, and the accessory gene regulator (agr) loci is one of the genetic loci responsible for its regulation. Recent reports examining Clostridioides difficile show that two agr loci, agr1 and agr2, regulate toxin production, but the diversity of agr loci and their epidemiology is unknown. In our study, in silico analysis was performed to research genetic diversity of agr, and C. difficile isolates from clinical samples underwent multilocus sequence typing (MLST) and PCR analysis of agr loci. To reveal the distribution of agr among different strains, phylogenetic analysis was also performed. In our in silico analysis, two different subtypes, named agr2R and agr2M, were found in agr2, which were previously reported. PCR analysis of 133 C . difficile isolates showed that 131 strains had agr1, 61 strains had agr2R, and 26 strains had agr2M; agr2R was mainly found in clade 1 or clade 2 organisms, whereas agr2M was only found in clade 4. With rare exception, agr1-negative sequence types (STs) belonged to clade C-Ⅰ and C-Ⅲ, and one clade 4 strain had agr2R. Our study revealed subtypes of agr2 not previously recognized, and the distribution of several agr loci in C. difficile . These findings provide a foundation for further functional and clinical research of the agr loci.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Preetha Shibu ◽  
Frazer McCuaig ◽  
Anne L. McCartney ◽  
Magdalena Kujawska ◽  
Lindsay J. Hall ◽  
...  

As part of the ongoing studies with clinically relevant Klebsiella spp., we characterized the genomes of three clinical GES-5-positive ST138 strains originally identified as Klebsiella oxytoca. bla OXY gene, average nucleotide identity and phylogenetic analyses showed the strains to be Klebsiella michiganensis . Affiliation of the strains to ST138 led us to demonstrate that the current multi-locus sequence typing scheme for K. oxytoca can be used to distinguish members of this genetically diverse complex of bacteria. The strains encoded the kleboxymycin biosynthetic gene cluster (BGC), previously only found in K. oxytoca strains and one strain of Klebsiella grimontii . The finding of this BGC, associated with antibiotic-associated haemorrhagic colitis, in K. michiganensis led us to carry out a wide-ranging study to determine the prevalence of this BGC in Klebsiella spp. Of 7170 publicly available Klebsiella genome sequences screened, 88 encoded the kleboxymycin BGC. All BGC-positive strains belonged to the K. oxytoca complex, with strains of four ( K. oxytoca , K. pasteurii , K. grimontii , K. michiganensis ) of the six species of complex found to encode the complete BGC. In addition to being found in K. grimontii strains isolated from preterm infants, the BGC was found in K. oxytoca and K. michiganensis metagenome-assembled genomes recovered from neonates. Detection of the kleboxymycin BGC across the K. oxytoca complex may be of clinical relevance and this cluster should be included in databases characterizing virulence factors, in addition to those characterizing BGCs.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Bojan Papić ◽  
Majda Golob ◽  
Irena Zdovc ◽  
Jana Avberšek ◽  
Metka Pislak Ocepek ◽  
...  

The spore-forming bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybees (Apis mellifera). In the present study, we used whole-genome sequencing (WGS) to investigate an extensive outbreak of AFB in northwestern Slovenia in 2019. A total of 59 P . larvae isolates underwent WGS, of which 40 originated from a single beekeeping operation, to assess the diversity of P. larvae within the beekeeping operation, apiary and colony. By applying a case-specific single-linkage threshold of 34 allele differences (AD), whole-genome multilocus sequence typing (wgMLST) identified two outbreak clusters represented by ERIC II-ST11 clones. All isolates from a single beekeeping operation fell within cluster 1 and the median pairwise AD between them was 10 (range=1–22). The median pairwise AD for apiaries of the same beekeeping operation ranged from 8 to 11 (min.=1, max.=22). For colonies of the same apiary and honey samples from these colonies, the median pairwise AD ranged from 8 to 14 (min.=1, max.=20). The maximum within-cluster distance was 33 pairwise AD for cluster 1 and 44 for cluster 2 isolates. The minimum distance between the outbreak-related and non-related isolates was 37 AD, confirming the importance of associated epidemiological data for delineating outbreak clusters. The observed transmission events could be explained by the activities of honeybees and beekeepers. The present study provides insight into the genetic diversity of P. larvae at different levels and thus provides information for future AFB surveillance.


Sign in / Sign up

Export Citation Format

Share Document