scholarly journals Comparative genomic insights into Yersinia hibernica – a commonly misidentified Yersinia enterocolitica-like organism

2020 ◽  
Vol 6 (9) ◽  
Author(s):  
Scott Van Nguyen ◽  
Dechamma Mundanda Muthappa ◽  
Athmanya K. Eshwar ◽  
James F. Buckley ◽  
Brenda P. Murphy ◽  
...  

Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica . This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica . The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICE Yh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica .

2020 ◽  
Vol 6 (9) ◽  
Author(s):  
María M. Cameranesi ◽  
Julian Paganini ◽  
Adriana S. Limansky ◽  
Jorgelina Moran-Barrio ◽  
Suzana P. Salcedo ◽  
...  

Acinetobacter baumannii (Aba) is an emerging opportunistic pathogen associated to nosocomial infections. The rapid increase in multidrug resistance (MDR) among Aba strains underscores the urgency of understanding how this pathogen evolves in the clinical environment. We conducted here a whole-genome sequence comparative analysis of three phylogenetically and epidemiologically related MDR Aba strains from Argentinean hospitals, assigned to the CC104O/CC15P clonal complex. While the Ab244 strain was carbapenem-susceptible, Ab242 and Ab825, isolated after the introduction of carbapenem therapy, displayed resistance to these last resource β-lactams. We found a high chromosomal synteny among the three strains, but significant differences at their accessory genomes. Most importantly, carbapenem resistance in Ab242 and Ab825 was attributed to the acquisition of a Rep_3 family plasmid carrying a bla OXA-58 gene. Other differences involved a genomic island carrying resistance to toxic compounds and a Tn10 element exclusive to Ab244 and Ab825, respectively. Also remarkably, 44 insertion sequences (ISs) were uncovered in Ab825, in contrast with the 14 and 11 detected in Ab242 and Ab244, respectively. Moreover, Ab825 showed a higher killing capacity as compared to the other two strains in the Galleria mellonella infection model. A search for virulence and persistence determinants indicated the loss or IS-mediated interruption of genes encoding many surface-exposed macromolecules in Ab825, suggesting that these events are responsible for its higher relative virulence. The comparative genomic analyses of the CC104O/CC15P strains conducted here revealed the contribution of acquired mobile genetic elements such as ISs and plasmids to the adaptation of A. baumannii to the clinical setting.


Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2020 ◽  
Vol 70 (11) ◽  
pp. 5753-5798 ◽  
Author(s):  
Radhey S. Gupta ◽  
Sudip Patel ◽  
Navneet Saini ◽  
Shu Chen

To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium . The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer ‘ Bacillus kyonggiensi s’ to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis ) or the Cereus clade (containing B. anthracis and B. cereus ). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Hyo-Young Oh ◽  
Shivakumar S. Jalde ◽  
In-Young Chung ◽  
Yeon-Ji Yoo ◽  
Hye-Jeong Jang ◽  
...  

Introduction. Antipathogenic or antivirulence strategy is to target a virulence pathway that is dispensable for growth, in the hope to mitigate the selection for drug resistance. Hypothesis/Gap Statment. Peroxide stress responses are one of the conserved virulence pathways in bacterial pathogens and thus good targets for antipathogenic strategy. Aim. This study aims to identify a new chemical compound that targets OxyR, the peroxide sensor required for the full virulence of the opportunistic human pathogen, Pseudomonas aeruginosa . Methodology. Computer-based virtual screening under consideration of the ‘eNTRy’ rules and molecular docking were conducted on the reduced form of the OxyR regulatory domain (RD). Selected hits were validated by their ability to phenocopy the oxyR null mutant and modulate the redox cycle of OxyR. Results. We first isolated three robust chemical hits that inhibit OxyR without affecting prototrophic growth or viability. One (compound 1) of those affected the redox cycle of OxyR in response to H2O2 treatment, in a way to impair its function. Compound 1 displayed selective antibacterial efficacy against P. aeruginosa in Drosophila infection model, without antibacterial activity against Staphylococcus aureus . Conclusion. These results suggest that compound 1 could be an antipathogenic hit inhibiting the P. aeruginosa OxyR. More importantly, our study provides an insight into the computer-based discovery of new-paradigm selective antibacterials to treat Gram-negative bacterial infections presumably with few concerns of drug resistance.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Arnold Bainomugisa ◽  
Ella M. Meumann ◽  
Giri Shan Rajahram ◽  
Rick Twee-Hee Ong ◽  
Lachlan Coin ◽  
...  

Tuberculosis is a leading public health priority in eastern Malaysia. Knowledge of the genomic epidemiology of tuberculosis can help tailor public health interventions. Our aims were to determine tuberculosis genomic epidemiology and characterize resistance mutations in the ethnically diverse city of Kota Kinabalu, Sabah, located at the nexus of Malaysia, Indonesia, Philippines and Brunei. We used an archive of prospectively collected Mycobacterium tuberculosis samples paired with epidemiological data. We collected sputum and demographic data from consecutive consenting outpatients with pulmonary tuberculosis at the largest tuberculosis clinic from 2012 to 2014, and selected samples from tuberculosis inpatients from the tertiary referral centre during 2012–2014 and 2016–2017. Two hundred and eight M . tuberculosis sequences were available for analysis, representing 8 % of cases notified during the study periods. Whole-genome phylogenetic analysis demonstrated that most strains were lineage 1 (195/208, 93.8 %), with the remainder being lineages 2 (8/208, 3.8 %) or 4 (5/208, 2.4 %). Lineages or sub-lineages were not associated with patient ethnicity. The lineage 1 strains were diverse, with sub-lineage 1.2.1 being dominant (192, 98 %). Lineage 1.2.1.3 isolates were geographically most widely distributed. The greatest diversity occurred in a border town sub-district. The time to the most recent common ancestor for the three major lineage 1.2.1 clades was estimated to be the year 1966 (95 % HPD 1948–1976). An association was found between failure of culture conversion by week 8 of treatment and infection with lineage 2 (4/6, 67 %) compared with lineage 1 strains (4/83, 5 %) (P<0.001), supporting evidence of greater virulence of lineage 2 strains. Eleven potential transmission clusters (SNP difference ≤12) were identified; at least five included people living in different sub-districts. Some linked cases spanned the whole 4-year study period. One cluster involved a multidrug-resistant tuberculosis strain matching a drug-susceptible strain from 3 years earlier. Drug resistance mutations were uncommon, but revealed one phenotype–genotype mismatch in a genotypically multidrug-resistant isolate, and rare nonsense mutations within the katG gene in two isolates. Consistent with the regionally mobile population, M. tuberculosis strains in Kota Kinabalu were diverse, although several lineage 1 strains dominated and were locally well established. Transmission clusters – uncommonly identified, likely attributable to incomplete sampling – showed clustering occurring across the community, not confined to households or sub-districts. The findings indicate that public health priorities should include active case finding and early institution of tuberculosis management in mobile populations, while there is a need to upscale effective contact investigation beyond households to include other contacts within social networks.


2020 ◽  
Vol 69 (3) ◽  
pp. 478-486
Author(s):  
Joycelyn Ho ◽  
Min Zhao ◽  
Samuel Wojcik ◽  
George Taiaroa ◽  
Margi Butler ◽  
...  

Introduction. Pseudomonas syringae pv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world. Aim. We aim to introduce a CRISPR–Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in other Pseudomonas species. Methodology. Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR–Cas9 sequences from Streptococcus pyogenes, for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in both Escherichia coli and Psa. Results. We have constructed plasmids carrying a CRISPR–Cas9 system based on that of S. pyogenes , which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR–Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in the P. syringae genome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site. Conclusion. We have constructed shuttle plasmids carrying a CRISPR–Cas9 system that are maintained in both E. coli and P. syringae pv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Kyrylo Bessonov ◽  
Chad Laing ◽  
James Robertson ◽  
Irene Yong ◽  
Kim Ziebell ◽  
...  

Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results. To address these specific requirements, we developed ECTyper (https://github.com/phac-nml/ecoli_serotyping) for performing both speciation within Escherichia and Shigella , and in silico serotype prediction. We compared the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic serotype information. We found that all tools were highly concordant, with 92–97 % for O-antigens and 98–100 % for H-antigens, and ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable drop in concordance, with 75–91 % for O-antigens and 62–90 % for H-antigens, and ECTyper and SerotypeFinder being the most concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.


2020 ◽  
Vol 69 (11) ◽  
pp. 1319-1331
Author(s):  
Chandran Sivasankar ◽  
Nisha Kumari Jha ◽  
Satya Rajan Singh ◽  
Ayaluru Murali ◽  
Prathapkumar Halady Shetty

Introduction. Yersinia enterocolitica is one of the leading food-borne entero-pathogens causing various illnesses ranging from gastroenteritis to systemic infections. Quorum sensing (QS) is one of the prime mechanisms that control the virulence in Y. enterocolitica . Hypothesis/Gap Statement. Vanillic acid inhibits the quorum sensing and other virulence factors related to Y. enterocolitica . It has been evaluated by transcriptomic and Insilico analysis. Therefore, it can be a prospective agent to develop a therapeutic combination against Y. enterocolitica . Aim. The present study is focused on screening natural anti-quorum-sensing agents against Y. enterocolitica . The effect of selected active principle on various virulence factors was evaluated. Methodology. In total, 12 phytochemicals were screened by swarming assay. MATH assay, EPS and surfactant production assay, SEM analysis, antibiotic and blood sensitivity assay were performed to demonstrate the anti-virulence activity. Further, RNA sequencing and molecular docking studies were carried out to substantiate the anti-QS activity. Results. Vanillic acid (VA) has exhibited significant motility inhibition, thus indicating the anti-QS activity with MQIC of 400 µg ml−1 without altering the cell viability. It has also inhibited the violacein production in Chromobacterium violaceum ATCC 12472, which further confirms the anti-QS activity. VA has inhibited 16 % of cell-surface hydrophobicity (CSH), 52 % of EPS production and 60 % of surfactant production. Moreover, it has increased the sensitivity of Y. enterocolitica towards antibiotics. It has also made the cells upto 91 % more vulnerable towards human immune cells. The transcriptomic analysis by RNA sequencing revealed the down regulation of genes related to motility, virulence, chemotaxis, siderophores and drug resistance. VA treatment has also positively regulated the expression of several stress response genes. In furtherance, the anti-QS potential of VA has been validated with QS regulatory protein YenR by in silico molecular simulation and docking study. Conclusion. The present study is possibly the first attempt to demonstrate the anti-QS and anti-pathogenic potential of VA against Y. enterocolitica by transcriptomic and in silico analysis. It also deciphers that VA can be a promising lead to develop biopreservative and therapeutic regimens to treat Y. enterocolitica infections.


2019 ◽  
Vol 69 (4) ◽  
pp. 964-969 ◽  
Author(s):  
Masanori Tohno ◽  
Yasuhiro Tanizawa ◽  
Yoichiro Kojima ◽  
Mitsuo Sakamoto ◽  
Yasukazu Nakamura ◽  
...  

A taxonomic study of a Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, catalase-negative bacterium, strain YK43T, isolated from spent mushroom substrates stored in Nagano, Japan was performed. Growth was detected at 15–45 °C, pH 5.0–8.5, and 0–10 % (w/v) NaCl. The genomic DNA G+C content of strain YK43T was 43.6 mol%. The predominant fatty acids were C16 : 0, C18 : 1 ω9c and summed feature 8. Based on 16S rRNA gene sequence analysis, the type strains of Lactobacillus acidipiscis (sequence similarity, 97.6 %) and Lactobacillus pobuzihii (97.4 %) were most closely related to YK43T. The average nucleotide identities were 74.1 % between strain YK43T and L. acidipiscis DSM 15836T and 74.0 % between YK43T and L. pobuzihii E100301T. Based on a multilocus sequence analysis, comparative genomic analysis and a range of phenotypic and chemotaxonomic characteristics, strain YK43T represents a novel species of the genus Lactobacillus , for which the name Lactobacillus salitolerans sp. nov. is proposed. The type strain is YK43T (=JCM 31331T = DSM 103433T).


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Marcus M. Dillon ◽  
Tatiana Ruiz-Bedoya ◽  
Cedoljub Bundalovic-Torma ◽  
Kevin M. Guttman ◽  
Haejin Kwak ◽  
...  

Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae , although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.


Sign in / Sign up

Export Citation Format

Share Document