scholarly journals Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology

2020 ◽  
Vol 6 (10) ◽  
Author(s):  
Laura Perlaza-Jiménez ◽  
Qing Wu ◽  
Von Vergel L. Torres ◽  
Xiaoxiao Zhang ◽  
Jiahui Li ◽  
...  

During March 2017, a neonatal patient with severe diarrhoea subsequently developed septicaemia and died, with Klebsiella isolated as the causative microorganism. In keeping with infection control protocols, the coincident illness of an attending staff member and three other neonates with Klebsiella infection triggered an outbreak response, leading to microbiological assessment of isolates collected from the staff member and all 21 co-housed neonates. Multilocus sequence typing and genomic sequencing identified that the isolates from the 21 neonates were of a new Klebsiella sequence type, ST2727, and taxonomically belonged to K. quasipneumoniae subsp. similipneumoniae (formerly referred to as KpIIB). Genomic characterization showed that the isolated ST2727 strains had diverged from other K. quasipneumoniae subsp. similipneumoniae strains at least 90 years ago, whereas the neonatal samples were highly similar with a genomic divergence of 3.6 months. There was no relationship to the Klebsiella isolate from the staff member. This demonstrates that no transmission occurred from staff to patient or between patients. Rather, the data suggest that ST2727 colonized each neonate from a common hospital source. Sequence-based analysis of the genomes revealed several genes for antimicrobial resistance and some virulence features, but suggest that ST2727 is neither extremely-drug resistant nor hypervirulent. Our results highlight the clinical significance and genomic properties of ST2727 and urge genome-based measures be implemented for diagnostics and surveillance within hospital environments. Additionally, the present study demonstrates the need to scale the power of genomic analysis in retrospective studies where relatively few samples are available.

2020 ◽  
Author(s):  
Laura Perlaza-Jiménez ◽  
Qing Wu ◽  
Von Vergel L. Torres ◽  
Xiaoxiao Zhang ◽  
Jiahui Li ◽  
...  

ABSTRACTDuring March of 2017 a neonate patient suffered severe diarrhea and subsequently developed septicemia and died, with Klebsiella isolated as the causative microorganism. Coincident illness of an attending staff member and three other neonates with Klebsiella triggered a response, leading to a detailed microbiological and genomics investigation of isolates collected from the staff member and all 21 co-housed neonates. Multilocus sequence typing and genomic sequencing identified that the Klebsiella from all 21 neonates was a new MLST ST2727, and belonged to a less frequently detected subspecies K. quasipneumoniae subsp. similipneumoniae (KpIIB). Genomic characterization showed that the isolated ST2727 strains had diverged from other KpIIB strains at least >90 years ago, whereas the neonate samples were highly similar with a genomic divergence of 3.6 months and not related to the staff member, indicating that transmission did not occur from staff to patient or between patient to patient, but were acquired from a common hospital source. The genomes revealed that the isolates contained the ubiquitous ampH gene responsible for resistance to penicillin G, cefoxitin and cephalosporin C, and all Kp-IIB strains were competent for host cell adhesion. Our results highlight the clinical significance and genomic properties of relatively mild, but persistent MLST types such as ST2727, and urges for genomic surveillance and eradication within hospital environments.Data summaryGenome sequences generated in this study are available in NCBI under BioProject ID PRJNA610124. All bioinformatic protocols used to process the genomic data are available at https://github.com/vjlab/KpIIB_ST2727.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Xuebin Xu ◽  
Yan Chen ◽  
Hang Pan ◽  
Zaiyuan Pang ◽  
Fang Li ◽  
...  

Salmonella is composed of a wide variety of serovars, causing human self-limited gastrointestinal illnesses or invasive infections. Invasive non-typhoidal Salmonella (iNTS) is well documented, with high mortality for children and immunocompromised adults in sub-Saharan Africa and has recently been reported in Southeast Asia. However, iNTS in China remains unknown. In May 2019, a case of invasive infection caused by Salmonella enterica serovar Uzaramo (S. Uzaramo) was reported for the first time in China. Phylogenomic analysis was performed by genomic sequencing the available contextualized isolates, which separated the two Chinese strains into different sublineages. Both phenotypic and genomic characterization demonstrated that the S. Uzaramo isolates showed in general low antimicrobial resistance potential, except one isolated from lake-water in China. Additional comparative genomic analysis and Caenorhabditis elegans killing assays suggested a unique combination of virulence factors, including typhoid toxin and tcf fimbrial adhesin, which might play a role in the invasive infection. This study highlights that the transparency of global surveillance genomic data could accelerate understanding of virulence and antimicrobial resistance makeup of a previously unknown threat.


Author(s):  
Hye Jeong Kang ◽  
Min-Kyeong Kim ◽  
Su Gwon Roh ◽  
Seung Bum Kim

A Gram-stain-negative, oxidase-positive, catalase-positive, aerobic, orange-pigmented, rod-shaped and non-motile bacterium designated strain MMS17-SY002T was isolated from island soil. The isolate grew at 20–37 °C (optimum, 30 °C), at pH 6.0–9.5 (optimum, pH 7) and in the presence of 0.5–4.0 % (w/v) NaCl (optimum, 2.0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MMS17-SY002T was mostly related to the genus Muriicola of the family Flavobacteriaceae and had highest sequence similarity of 96.82 % to Muriicola marianensis A6B8T and Muriicola jejuensis EM44T, but formed a distinct phylogenetic line within the genus. Chemotaxonomic analyses showed that menaquinone 6 was the predominant isoprenoid quinone, the major fatty acids were iso-C15 : 1 G and iso-C15 : 0, and the diagnostic polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 42.4 mol%. Strain MMS17-SY002T could be distinguished from related species by the combination of trypsin, α-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase and β-glucosidase activities. The orthologous average nucleotide identity between the genomes of strain MMS17-SY002T and M. jejuensis and that between the strain and M. marianensis A6B8T were 73.26 and 73.33%, respectively, thus confirming the separation of the strain from related species at species level. Based on the phenotypic, phylogenetic, chemotaxonomic and genomic characterization, MMS17-SY002T should be recognized as a novel species of the genus Muriicola , for which the name Muriicola soli sp. nov. is proposed. The type strain is MMS17-SY002T (=KCTC 62790T=JCM 32370T).


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Glen P. Carter ◽  
James E. Ussher ◽  
Anders Gonçalves Da Silva ◽  
Sarah L. Baines ◽  
Helen Heffernan ◽  
...  

ABSTRACT Coagulase-negative staphylococci (CoNS), such as Staphylococcus capitis, are major causes of bloodstream infections in neonatal intensive care units (NICUs). Recently, a distinct clone of S. capitis (designated S. capitis NRCS-A) has emerged as an important pathogen in NICUs internationally. Here, 122 S. capitis isolates from New Zealand (NZ) underwent whole-genome sequencing (WGS), and these data were supplemented with publicly available S. capitis sequence reads. Phylogenetic and comparative genomic analyses were performed, as were phenotypic assessments of antimicrobial resistance, biofilm formation, and plasmid segregational stability on representative isolates. A distinct lineage of S. capitis was identified in NZ associated with neonates and the NICU environment. Isolates from this lineage produced increased levels of biofilm, displayed higher levels of tolerance to chlorhexidine, and were multidrug resistant. Although similar to globally circulating NICU-associated S. capitis strains at a core-genome level, NZ NICU S. capitis isolates carried a novel stably maintained multidrug-resistant plasmid that was not present in non-NICU isolates. Neonatal blood culture isolates were indistinguishable from environmental S. capitis isolates found on fomites, such as stethoscopes and neonatal incubators, but were generally distinct from those isolates carried by NICU staff. This work implicates the NICU environment as a potential reservoir for neonatal sepsis caused by S. capitis and highlights the capacity of genomics-based tracking and surveillance to inform future hospital infection control practices aimed at containing the spread of this important neonatal pathogen.


Author(s):  
Danni Wu ◽  
Hongcan Liu ◽  
Yuguang Zhou ◽  
Xiaolei Wu ◽  
Yong Nie ◽  
...  

A pink, ovoid-shaped, Gram-stain-negative, strictly aerobic and motile bacterial strain, designated ROY-5-3T, was isolated from an oil production mixture from Yumen Oilfield in PR China. The strain grew at 4–42 °C (optimum, 30 °C), at pH 5–10 (optimum, 7) and with 0–5 % (w/v) NaCl (optimum, 0%). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that ROY-5-3T belongs to the genus Roseomonas and shared the highest pairwise similarities with Roseomonas frigidaquae CW67T (98.1%), Roseomonas selenitidurans BU-1T (97.8%), Roseomonas tokyonensis K-20T (97.7%) and Roseomonas stagni HS-69T (97.3%). The average nucleotide identity and digital DNA–DNA hybridization values between ROY-5-3T and other related type strains of Roseomonas species were less than 84.08 and 28.60 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate ROY-5-3T shared 3265 core gene families with the four closely related type strains in Roseomonas , and the number of strain-specific gene families was 513. The major fatty acids were identified as summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c) and C16 : 0. Strain ROY-5-3T contained Q-10 as the main ubiquinone and the genomic DNA G+C content was 69.8 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Based on the phylogenetic, morphological, physiological, chemotaxonomic and genome analyses, strain ROY-5-3T represents a novel species of the genus Roseomonas for which the name Roseomonas oleicola sp. nov. is proposed. The type strain is ROY-5-3T (=CGMCC 1.13459T =KCTC 82484T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5918-5925 ◽  
Author(s):  
Hyun-Ju Noh ◽  
Seung Chul Shin ◽  
Yerin Park ◽  
Ahyoung Choi ◽  
Kiwoon Baek ◽  
...  

Two Gram-stain-negative, facultative anaerobic, chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 26568 and PAMC 26569T, were isolated from an Antarctic lichen. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains PAMC 26568 and PAMC 26569T belong to the family Acetobacteraceae and the most closely related species are Gluconacetobacter takamatsuzukensis (96.1 %), Gluconacetobacter tumulisoli (95.9 %) and Gluconacetobacter sacchari (95.7 %). Phylogenomic and genomic relatedness analyses showed that strains PAMC 26568 and PAMC 26569T are clearly distinguished from other genera in the family Acetobacteraceae by average nucleotide identity values (<72.8 %) and the genome-to-genome distance values (<22.5 %). Genomic analysis revealed that strains PAMC 26568 and PAMC 26569T do not contain genes involved in atmospheric nitrogen fixation and utilization of sole carbon compounds such as methane and methanol. Instead, strains PAMC 26568 and PAMC 26569T possess genes to utilize nitrate and nitrite and certain monosaccharides and disaccharides. The major fatty acids (>10 %) are summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 40.3–40.4 %), C18 : 1 2OH (22.7–23.7 %) and summed feature 2 (C14 : 0 3OH and/or C16 : 1 iso I; 12.0 % in PAMC 26568). The major respiratory quinone is Q-10. The genomic DNA G+C content of PAMC 26568 and PAMC 26569T is 64.6 %. Their distinct phylogenetic position and some physiological characteristics distinguish strains PAMC 26568 and PAMC 26569T from other genera in the family Acetobacteraceae supporting the proposal of Lichenicola gen. nov., with the type species Lichenicola cladoniae sp. nov. (type strain, PAMC 26569T=KCCM 43315T=JCM 33604T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3004-3011 ◽  
Author(s):  
Guangyu Li ◽  
Shanshan Wang ◽  
Yingbao Gai ◽  
Xiupian Liu ◽  
Qiliang Lai ◽  
...  

An aerobic, Gram-stain-negative bacterium, designated CLL7-20T, was isolated from a marine sediment sample from offshore of Changyi, Shandong Province, China. Cells of strain CLL7-20T were rod-shaped, motile with one or more polar flagella, and grew optimally at pH 7.0, at 28 °C and with 3 % (w/v) NaCl. The principal fatty acids of strain CLL7-20T were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The main polar lipids of strain CLL7-20T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and an unidentified aminolipid (AL). Strain CLL7-20T contained Q-9 as the major respiratory quinone. The G+C content of its genomic DNA was 56.2 mol%. Phylogenetically, strain CLL7-20T branched within the genus Marinobacter , with M. daqiaonensis YCSA40T being its closest phylogenetic relative (96.7 % 16S rRNA gene sequence similarity), followed by M. sediminum R65T (96.6 %). Average nucleotide identity and in silico DNA–DNA hybridization values between strain CLL7-20T and the closest related reference strains were 73.2% and 19.8 %, respectively. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, we suggest that strain CLL7-20T (=MCCC 1A14855T=KCTC 72664T) is the type strain of a novel species in the genus Marinobacter , for which the name Marinobacter changyiensis sp. nov. is proposed. Based on the genomic analysis, siderophore genes were found from strain CLL7-20T, which indicate its potential as a promising alternative to chemical fertilizers in iron-limitated environments such as saline soils.


2020 ◽  
Vol 70 (8) ◽  
pp. 4767-4773 ◽  
Author(s):  
Jong-Shian Liou ◽  
Chien-Hsun Huang ◽  
Nao Ikeyama ◽  
Ai-Yun Lee ◽  
I-Ching Chen ◽  
...  

A strictly anaerobic predominant bacterium, designated as strain gm001T, was isolated from a freshly voided faecal sample collected from a healthy Taiwanese adult. Cells were Gram-stain-negative rods, non-motile and non-spore-forming. Strain gm001T was identified as a member of the genus Prevotella , and a comparison of 16S rRNA and hsp60 gene sequences revealed sequence similarities of 98.5 and 93.3 %, respectively, demonstrating that it was most closely related to the type strain of Prevotella copri . Phylogenomic tree analysis indicated that the gm001T cluster is an independent lineage of P. copri DSM 18205T. The average nucleotide identity, digital DNA‒DNA hybridization and average amino acid identity values between strain gm001T and P. copri DSM 18205T were 80.9, 28.6 and 83.8 %, respectively, which were clearly lower than the species delineation thresholds. The species-specific genes of this novel species were also identified on the basis of pan-genomic analysis. The predominant menaquinones were MK-11 and MK-12, and the predominant fatty acids were anteiso-C15 : 0, C15 : 0 and iso-C15 : 0. Acetate and succinate were produced from glucose as metabolic end products. Taken together, the results indicate that strain gm001T represents a novel species of the genus Prevotella , for which the name Prevotella hominis sp. nov. is proposed. The type strain is gm001T (=BCRC 81118T=JCM 33280T).


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Silvia Giannattasio-Ferraz ◽  
Adriana Ene ◽  
Laura Maskeri ◽  
Andre Penido Oliveira ◽  
Edel F. Barbosa-Stancioli ◽  
...  

Corynebacterium phoceense is a Gram-positive species previously isolated from human urine. Although other species from the same genus have been associated with urinary tract infections, C. phoceense is currently believed to be a non-pathogenic member of the urogenital microbiota. Prior to our study, only two isolates were described in the literature, and very little is known about the species. Here, we describe C. phoceense UFMG-H7, the first strain of this species isolated from the urine of healthy cattle. The genome for this isolate was produced and compared to the two other publicly available C. phoceense as well as other Corynebacterium genome assemblies. Our in-depth genomic analysis identified four additional publicly available genome assemblies that are representatives of the species, also isolated from the human urogenital tract. Although none of the strains have been associated with symptoms or disease, numerous genes associated with virulence factors are encoded. In contrast to related Corynebacterium species and Corynebacterium species from the bovine vaginal tract, all C. phoceense strains examined code for the SpaD-type pili suggesting adherence is essential for its persistence within the urinary tract. As the other C. phoceense strains analysed were isolated from the human urogenital tract, our results suggest that this species may be specific to this niche.


2020 ◽  
Vol 70 (12) ◽  
pp. 6024-6031 ◽  
Author(s):  
Leonor Martins ◽  
Camila Fernandes ◽  
Jochen Blom ◽  
Nay C. Dia ◽  
Joël F. Pothier ◽  
...  

We describe a novel species isolated from walnut (Juglans regia) which comprises non-pathogenic and pathogenic strains on walnut. The isolates, obtained from a single ornamental walnut tree showing disease symptoms, grew on yeast extract–dextrose–carbonate agar as mucoid yellow colonies characteristic of Xanthomonas species. Pathogenicity assays showed that while strain CPBF 424T causes disease in walnut, strain CPBF 367 was non-pathogenic on walnut leaves. Biolog GEN III metabolic profiles disclosed some differences between strains CPBF 367 and CPBF 424T and other xanthomonads. Multilocus sequence analysis with seven housekeeping genes (fyuA, gyrB, rpoD, atpD, dnaK, efp, glnA) grouped these strains in a distinct cluster from Xanthomonas arboricola pv. juglandis and closer to Xanthomonas prunicola and Xanthomonas arboricola pv. populi. Average nucleotide identity (ANI) analysis results displayed similarity values below 93 % to X. arboricola strains. Meanwhile ANI and digital DNA–DNA hybridization similarity values were below 89 and 50 % to non-arboricola Xanthomonas strains, respectively, revealing that they do not belong to any previously described Xanthomonas species. Furthermore, the two strains show over 98 % similarity to each other. Genomic analysis shows that strain CPBF 424T harbours a complete type III secretion system and several type III effector proteins, in contrast with strain CPBF 367, shown to be non-pathogenic in plant bioassays. Taking these data altogether, we propose that strains CPBF 367 and CPBF 424T belong to a new species herein named Xanthomonas euroxanthea sp. nov., with CPBF 424T (=LMG 31037T=CCOS 1891T=NCPPB 4675T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document