scholarly journals Phylogeny of Salmonella enterica subspecies arizonae by whole-genome sequencing reveals high incidence of polyphyly and low phase 1 H antigen variability

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Nikki W. Shariat ◽  
Ruth E. Timme ◽  
Abigail T. Walters

Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112  S . enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella , including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.

2015 ◽  
Vol 53 (8) ◽  
pp. 2402-2403 ◽  
Author(s):  
Claire Jenkins

The accessibility of whole-genome sequencing (WGS) presents the opportunity for national reference laboratories to provide a state-of-the-art public health surveillance service. The replacement of traditional serology-based typing ofEscherichia coliby WGS is supported by user-friendly, freely available data analysis Web tools. Anarticle in this issueof theJournal of Clinical Microbiology(K. G. Joensen, A. M. M. Tetzschner, A. Iguchi, F. M. Aarestrup, and F. Scheutz, J Clin Microbiol, 53:2410–2426, 2015,http://dx.doi.org/10.1128/JCM.00008-15) describes SerotypeFinder, an essential guide to serotypingE. coliin the 21st century.


2020 ◽  
Vol 70 (12) ◽  
pp. 6364-6372
Author(s):  
Ivo Sedláček ◽  
Roman Pantůček ◽  
Michal Zeman ◽  
Pavla Holochová ◽  
Ondrej Šedo ◽  
...  

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter . The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA–DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.


2018 ◽  
Vol 84 (13) ◽  
pp. e02829-17 ◽  
Author(s):  
I. M. Leon ◽  
S. D. Lawhon ◽  
K. N. Norman ◽  
D. S. Threadgill ◽  
N. Ohta ◽  
...  

ABSTRACTAlthoughSalmonella entericacan produce life-threatening colitis in horses, certain serotypes are more commonly associated with clinical disease. Our aim was to evaluate the proportional morbidity attributed to different serotypes, as well as the phenotypic and genotypic antimicrobial resistance (AMR) ofSalmonellaisolates from patients at an equine referral hospital in the southern United States. A total of 255Salmonellaisolates was obtained from clinical samples of patients admitted to the hospital between 2007 and 2015. Phenotypic resistance to 14 antibiotics surveilled by the U.S. National Antimicrobial Resistance Monitoring System was determined using a commercially available panel. Whole-genome sequencing was used to identify serotypes and genotypic AMR. The most common serotypes wereSalmonella entericaserotype Newport (18%),Salmonella entericaserotype Anatum (15.2%), andSalmonella entericaserotype Braenderup (11.8%). Most (n= 219) of the isolates were pansusceptible, while 25 were multidrug resistant (≥3 antimicrobial classes). Genes encoding beta-lactam resistance, such asblaCMY-2,blaSHV-12,blaCTX-M-27, andblaTEM-1B, were detected. TheqnrB2 andaac(6′)-Ib-crgenes were present in isolates with reduced susceptibility to ciprofloxacin. Genes encoding resistance to gentamicin (aph(3′)-Ia,aac(6′)-IIc), streptomycin (strA andstrB), sulfonamides (sul1), trimethoprim (dfrA), phenicols (catA), tetracyclines [tet(A) andtet(E)], and macrolides [ere(A)] were also identified. The main predicted incompatibility plasmid type was I1 (10%). Core genome-based analyses revealed phylogenetic associations between isolates of common serotypes. The presence of AMRSalmonellain equine patients increases the risk of unsuccessful treatment and causes concern for potential zoonotic transmission to attending veterinary personnel, animal caretakers, and horse owners. Understanding the epidemiology ofSalmonellain horses admitted to referral hospitals is important for the prevention, control, and treatment of salmonellosis.IMPORTANCEIn horses, salmonellosis is a leading cause of life-threatening colitis. At veterinary teaching hospitals, nosocomial outbreaks can increase the risk of zoonotic transmission, lead to restrictions on admissions, impact hospital reputation, and interrupt educational activities. The antimicrobials most often used in horses are included in the 5th revision of the World Health Organization's list of critically important antimicrobials for human medicine. Recent studies have demonstrated a trend of increasing bacterial resistance to drugs commonly used to treatSalmonellainfections. In this study, we identify temporal trends in the distribution ofSalmonellaserotypes and their mechanisms of antimicrobial resistance; furthermore, we are able to determine the likely origin of several temporal clusters of infection by using whole-genome sequencing. These data can be used to focus strategies to better contain the dissemination and enhance the mitigation ofSalmonellainfections and to provide evidence-based policies and guidelines to steward antimicrobial use in veterinary medicine.


2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Moon Y. F. Tay ◽  
Frederick Adzitey ◽  
Stella Amelia Sultan ◽  
Joseph Makija Tati ◽  
Kelyn L. G. Seow ◽  
...  

Here, we report the draft genome sequences of 16 nontyphoidal Salmonella enterica isolates obtained from locally produced meats in Tamale, Ghana, which are commonly consumed by most natives as an important protein source. The draft genomes will help provide a molecular snapshot of Salmonella enterica isolates found in these retail meats in Tamale.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Alicia G. Beukers ◽  
Henrik Hasman ◽  
Kristin Hegstad ◽  
Sebastiaan J. van Hal

ABSTRACT Mutations associated with linezolid resistance within the V domain of 23S rRNA are annotated using an Escherichia coli numbering system. The 23S rRNA gene varies in length, nucleotide sequence, and copy number among bacterial species. Consequently, this numbering system is not intuitive and can lead to confusion when mutation sites are being located using whole-genome sequencing data. Using the mutation G2576T as an example, we demonstrate the difficulties associated with using the E. coli numbering system.


2020 ◽  
Vol 9 (13) ◽  
Author(s):  
William Calero-Cáceres ◽  
Joyce Villacís ◽  
Maria Ishida ◽  
Elton Burnett ◽  
Christian Vinueza-Burgos

Five strains of Salmonella enterica subsp. enterica serovar Infantis and two strains of S. enterica subsp. enterica serovar Kentucky isolated in 2017 from Ecuadorian layer poultry farms were sequenced using Illumina MiSeq technology. These isolates were collected on layer farms in central Ecuador, one of the most important areas of egg production in the country. The genome sequences of these isolates show valuable information for surveillance purposes.


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Casper Jamin ◽  
Sien De Koster ◽  
Stefanie van Koeveringe ◽  
Dieter De Coninck ◽  
Klaas Mensaert ◽  
...  

Whole-genome sequencing (WGS) is becoming the de facto standard for bacterial typing and outbreak surveillance of resistant bacterial pathogens. However, interoperability for WGS of bacterial outbreaks is poorly understood. We hypothesized that harmonization of WGS for outbreak surveillance is achievable through the use of identical protocols for both data generation and data analysis. A set of 30 bacterial isolates, comprising of various species belonging to the Enterobacteriaceae family and Enterococcus genera, were selected and sequenced using the same protocol on the Illumina MiSeq platform in each individual centre. All generated sequencing data were analysed by one centre using BioNumerics (6.7.3) for (i) genotyping origin of replications and antimicrobial resistance genes, (ii) core-genome multi-locus sequence typing (cgMLST) for Escherichia coli and Klebsiella pneumoniae and whole-genome multi-locus sequencing typing (wgMLST) for all species. Additionally, a split k-mer analysis was performed to determine the number of SNPs between samples. A precision of 99.0% and an accuracy of 99.2% was achieved for genotyping. Based on cgMLST, a discrepant allele was called only in 2/27 and 3/15 comparisons between two genomes, for E. coli and K. pneumoniae, respectively. Based on wgMLST, the number of discrepant alleles ranged from 0 to 7 (average 1.6). For SNPs, this ranged from 0 to 11 SNPs (average 3.4). Furthermore, we demonstrate that using different de novo assemblers to analyse the same dataset introduces up to 150 SNPs, which surpasses most thresholds for bacterial outbreaks. This shows the importance of harmonization of data-processing surveillance of bacterial outbreaks. In summary, multi-centre WGS for bacterial surveillance is achievable, but only if protocols are harmonized.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Shaokang Zhang ◽  
Hendrik C. den Bakker ◽  
Shaoting Li ◽  
Jessica Chen ◽  
Blake A. Dinsmore ◽  
...  

ABSTRACT SeqSero, launched in 2015, is a software tool for Salmonella serotype determination from whole-genome sequencing (WGS) data. Despite its routine use in public health and food safety laboratories in the United States and other countries, the original SeqSero pipeline is relatively slow (minutes per genome using sequencing reads), is not optimized for draft genome assemblies, and may assign multiple serotypes for a strain. Here, we present SeqSero2 (github.com/denglab/SeqSero2; denglab.info/SeqSero2), an algorithmic transformation and functional update of the original SeqSero. Major improvements include (i) additional sequence markers for identification of Salmonella species and subspecies and certain serotypes, (ii) a k-mer based algorithm for rapid serotype prediction from raw reads (seconds per genome) and improved serotype prediction from assemblies, and (iii) a targeted assembly approach for specific retrieval of serotype determinants from WGS for serotype prediction, new allele discovery, and prediction troubleshooting. Evaluated using 5,794 genomes representing 364 common U.S. serotypes, including 2,280 human isolates of 117 serotypes from the National Antimicrobial Resistance Monitoring System, SeqSero2 is up to 50 times faster than the original SeqSero while maintaining equivalent accuracy for raw reads and substantially improving accuracy for assemblies. SeqSero2 further suggested that 3% of the tested genomes contained reads from multiple serotypes, indicating a use for contamination detection. In addition to short reads, SeqSero2 demonstrated potential for accurate and rapid serotype prediction directly from long nanopore reads despite base call errors. Testing of 40 nanopore-sequenced genomes of 17 serotypes yielded a single H antigen misidentification. IMPORTANCE Serotyping is the basis of public health surveillance of Salmonella. It remains a first-line subtyping method even as surveillance continues to be transformed by whole-genome sequencing. SeqSero allows the integration of Salmonella serotyping into a whole-genome-sequencing-based laboratory workflow while maintaining continuity with the classic serotyping scheme. SeqSero2, informed by extensive testing and application of SeqSero in the United States and other countries, incorporates important improvements and updates that further strengthen its application in routine and large-scale surveillance of Salmonella by whole-genome sequencing.


Sign in / Sign up

Export Citation Format

Share Document