scholarly journals Evolution and emergence of multidrug-resistant Mycobacterium tuberculosis in Chisinau, Moldova

2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Tyler S. Brown ◽  
Vegard Eldholm ◽  
Ola Brynildsrud ◽  
Magnus Osnes ◽  
Natalie Levy ◽  
...  

The evolution and emergence of drug-resistant tuberculosis (TB) has been studied extensively in some contexts, but the ecological drivers of these two processes remain poorly understood. This study sought to describe the joint evolutionary and epidemiological histories of a novel multidrug-resistant Mycobacterium tuberculosis strain recently identified in the capital city of the Republic of Moldova (MDR Ural/4.2), where genomic surveillance of drug-resistant M. tuberculosis has been limited thus far. Using whole genome sequence data and Bayesian phylogenomic methods, we reconstruct the stepwise acquisition of drug resistance mutations in the MDR Ural/4.2 strain, estimate its historical bacterial population size over time, and infer the migration history of this strain between Eastern European countries. We infer that MDR Ural/4.2 likely evolved (via acquisition of rpoB S450L, which confers resistance to rifampin) in the early 1990s, during a period of social turmoil following Moldovan independence from the Soviet Union. This strain subsequently underwent substantial population size expansion in the early 2000s, at a time when national guidelines encouraged inpatient treatment of TB patients. We infer exportation of this strain and its isoniazid-resistant ancestral precursor from Moldova to neighbouring countries starting as early as 1985. Our findings suggest temporal and ecological associations between specific public health practices, including inpatient hospitalization of drug-resistant TB cases from the early 2000s until 2013, and the evolution of drug-resistant M. tuberculosis in Moldova. These findings underscore the need for regional coordination in TB control and expanded genomic surveillance efforts across Eastern Europe.

2021 ◽  
Author(s):  
Tyler S. Brown ◽  
Vegard Eldholm ◽  
Ola Brynildsrud ◽  
Magnus Osnes ◽  
Natalie Stennis ◽  
...  

1.ABSTRACTBackgroundDrug-resistant tuberculosis is a high priority threat to global public health. There are still critical gaps in understanding how novel drug-resistant M. tuberculosis strains emerge and, once emergent, what drives the differential propagation of certain epidemiologically-successful strains over others. This study sought to describe the joint evolutionary and epidemiological histories of a novel multidrug-resistant M. tuberculosis strain recently identified in the capital city of the Republic of Moldova (MDR Ural/4.2).MethodsUsing whole genome sequence data and Bayesian phylogenomic methods, we reconstruct the stepwise acquisition of drug-resistance mutations in the MDR Ural/4.2 strain, estimate its historical bacterial population size over time, and infer the migration history of this strain between Eastern European countries.ResultsWe infer that MDR Ural/4.2 likely evolved (via acquisition of rpoB S450L, which confers resistance to rifampin) in the early 1990s, during a period of social turmoil following Moldovan independence from the Soviet Union. This strain subsequently underwent substantial population size expansion in the early 2000s, at a time when national guidelines encouraged in hospital treatment of TB patients. We infer exportation of this strain and its INH-resistant ancestral precursor from Moldova to neighboring countries starting as early as 1985.ConclusionsOur findings underscore how public health practice and social determinants of health shape the conditions under which M. tuberculosis evolves, and demonstrates how historical changes in these conditions shape present-day challenges in TB control. These findings underscore the need for regional coordination in TB control across Eastern Europe.


2020 ◽  
Vol 70 (3) ◽  
pp. 2115-2123 ◽  
Author(s):  
Peter Kuhnert ◽  
Isabelle Brodard ◽  
Maher Alsaaod ◽  
Adrian Steiner ◽  
Michael H. Stoffel ◽  
...  

‘ Treponema phagedenis ’ was originally described in 1912 by Noguchi but the name was not validly published and no type strain was designated. The taxon was not included in the Approved Lists of Bacterial Names and hence has no standing in nomenclature. Six Treponema strains positive in a ‘ T. phagedenis ’ phylogroup-specific PCR test were isolated from digital dermatitis (DD) lesions of cattle and further characterized and compared with the human strain ‘ T. phagedenis ’ ATCC 27087. Results of phenotypic and genotypic analyses including API ZYM, VITEK2, MALDI-TOF and electron microscopy, as well as whole genome sequence data, respectively, showed that they form a cluster of species identity. Moreover, this species identity was shared with ‘ T. phagedenis ’-like strains reported in the literature to be regularly isolated from bovine DD. High average nucleotide identity values between the genomes of bovine and human ‘ T. phagedenis ’ were observed. Slight genomic as well as phenotypic variations allowed us to differentiate bovine from human isolates, indicating host adaptation. Based on the fact that this species is regularly isolated from bovine DD and that the name is well dispersed in the literature, we propose the species Treponema phagedenis sp. nov., nom. rev. The species can phenotypically and genetically be identified and is clearly separated from other Treponema species. The valid species designation will allow to further explore its role in bovine DD. The type strain for Treponema phagedenis sp. nov., nom. rev. is B43.1T (=DSM 110455T=NCTC 14362T) isolated from a bovine DD lesion in Switzerland.


Author(s):  
Marvin A. Altamia ◽  
J. Reuben Shipway ◽  
David Stein ◽  
Meghan A. Betcher ◽  
Jennifer M. Fung ◽  
...  

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter . The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


Author(s):  
David Heidler von Heilborn ◽  
Jessica Reinmüller ◽  
Georg Hölzl ◽  
Jan P. Meier-Kolthoff ◽  
Christian Woehle ◽  
...  

Species belonging to the genus Sphingomonas have been isolated from environments such as soil, water and plant tissues. Many strains are known for their capability of degrading aromatic molecules and producing extracellular polymers. A Gram-stain-negative, strictly aerobic, motile, red-pigmented, oxidase-negative, catalase-positive, rod-shaped strain, designated DH-S5T, has been isolated from pork steak packed under CO2-enriched modified atmosphere. Cell diameters were 1.5×0.9 µm. Growth optima were at 30 °C and at pH 6.0. Phylogenetic analyses based on both complete 16S rRNA gene sequence and whole-genome sequence data revealed that strain DH-S5T belongs to the genus Sphingomonas , being closely related to Sphingomonas alpina DSM 22537T (97.4 % gene sequence similarity), followed by Sphingomonas qilianensis X1T (97.4 %) and Sphingomonas hylomeconis GZJT-2T (97.3 %). The DNA G+C content was 64.4 mol%. The digital DNA–DNA hybridization value between the isolate strain and S. alpina DSM 22537T was 21.0 % with an average nucleotide identity value of 77.03 %. Strain DH-S5T contained Q-10 as the ubiquinone and major fatty acids were C18 : 1 cis 11 (39.3 %) and C16 : 1 cis 9 (12.5 %), as well as C16 : 0 (12.1 %) and C14 : 0 2-OH (11.4 %). As for polar lipids, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, dimethylphosphatidylethanolamine and sphingoglycolipid could be detected, alongside traces of monomethylphosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain DH-S5T (=DSM 110829T=LMG 31606T) is classified as a representative of the genus Sphingomonas , for which the name Sphingomonas aliaeris sp. nov. is proposed.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Ivan Sserwadda ◽  
Gerald Mboowa

The recent re-emergence of multidrug-resistant pathogens has exacerbated their threat to worldwide public health. The evolution of the genomics era has led to the generation of huge volumes of sequencing data at an unprecedented rate due to the ever-reducing costs of whole-genome sequencing (WGS). We have developed the Rapid Microbial Analysis Pipeline (rMAP), a user-friendly pipeline capable of profiling the resistomes of ESKAPE pathogens ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa and Enterobacter species) using WGS data generated from Illumina’s sequencing platforms. rMAP is designed for individuals with little bioinformatics expertise, and automates the steps required for WGS analysis directly from the raw genomic sequence data, including adapter and low-quality sequence read trimming, de novo genome assembly, genome annotation, single-nucleotide polymorphism (SNP) variant calling, phylogenetic inference by maximum likelihood, antimicrobial resistance (AMR) profiling, plasmid profiling, virulence factor determination, multi-locus sequence typing (MLST), pangenome analysis and insertion sequence characterization (IS). Once the analysis is finished, rMAP generates an interactive web-like html report. rMAP installation is very simple, it can be run using very simple commands. It represents a rapid and easy way to perform comprehensive bacterial WGS analysis using a personal laptop in low-income settings where high-performance computing infrastructure is limited.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Helianthous Verma ◽  
Shekhar Nagar ◽  
Shivani Vohra ◽  
Shubhanshu Pandey ◽  
Devi Lal ◽  
...  

Mycobacterium tuberculosis is a known human pathogen that causes the airborne infectious disease tuberculosis (TB). Every year TB infects millions of people worldwide. The emergence of multi-drug resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis strains against the first- and second-line anti-TB drugs has created an urgent need for the development and implementation of new drug strategies. In this study, the complete genomes of 174 strains of M. tuberculosis are analysed to understand the evolution of molecular drug target (MDT) genes. Phylogenomic placements of M. tuberculosis strains depicted close association and temporal clustering. Selection pressure analysis by deducing the ratio of non-synonymous to synonymous substitution rates (dN/dS) in 51 MDT genes of the 174 M . tuberculosis strains led to categorizing these genes into diversifying (D, dN/dS>0.70), moderately diversifying (MD, dN/dS=0.35–0.70) and stabilized (S, dN/dS<0.35) genes. The genes rpsL, gidB, pncA and ahpC were identified as diversifying, and Rv0488, kasA, ndh, ethR, ethA, embR and ddn were identified as stabilized genes. Furthermore, sequence similarity networks were drawn that supported these divisions. In the multiple sequence alignments of diversifying and stabilized proteins, previously reported resistance mutations were checked to predict sensitive and resistant strains of M. tuberculosis . Finally, to delineate the potential of stabilized or least diversified genes/proteins as anti-TB drug targets, protein–protein interactions of MDT proteins with human proteins were analysed. We predict that kasA (dN/dS=0.29), a stabilized gene that encodes the most host-interacting protein, KasA, should serve as a potential drug target for the treatment of TB.


2020 ◽  
Vol 70 (3) ◽  
pp. 1691-1697 ◽  
Author(s):  
Xiao-Mei Fang ◽  
Hui-Jing Du ◽  
Jing-Lin Bai ◽  
Wen-Ni He ◽  
Jun Li ◽  
...  

Strain CPCC 203383T, isolated from the surface-sterilized fruit of Cerasus pseudocerasus (Lindl.) G. Don, was taxonomically characterized based on a polyphasic investigation. It had the highest 16S rRNA gene sequence similarities with Ornithinimicrobium pekingense DSM 21552 (97.2 %) and O. kibberense DSM 17687T (97.2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain formed a distinct phyletic branch within the genus Ornithinimicrobium and the whole genome sequence data analyses supported that strain CPCC 203383T was phylogenetically related to the Ornithinimicrobium species. The isolate shared a range of phenotypic patterns reported for members of the genus Ornithinimicrobium , but also had a range of cultural, physiological and biochemical characteristics that separated it from related Ornithinimicrobium species. The menaquinone was MK-8(H4). The polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI) and unidentified lipids (ULs). The major fatty acids (>5 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16:0, 9-methyl C16 : 0, iso-C17 : 0 and anteiso-C17 : 0. The cell wall peptidoglycan contains l-ornithine as diagnostic diamino acid and an interpeptide bridge consisting of L-Orn←L-Ala←Gly←D-Asp. The combined genotypic and phenotypic data indicated that the isolate represents a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium cerasi sp. nov. is proposed, with CPCC 203383T(=NBRC 113522T=KCTC 49200T) as the type strain. The DNA G+C composition is 72.3 mol%. The availability of new data allows for an emended description of the genus Ornithinimicrobium .


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


2021 ◽  
Author(s):  
Mattia Palmieri ◽  
Kelly L. Wyres ◽  
Caroline Mirande ◽  
Zhao Qiang ◽  
Ye Liyan ◽  
...  

Klebsiella pneumoniae is a frequent cause of nosocomial and severe community-acquired infections. Multidrug-resistant (MDR) and hypervirulent (hv) strains represent major threats, and tracking their emergence, evolution and the emerging convergence of MDR and hv traits is of major importance. We employed whole-genome sequencing (WGS) to study the evolution and epidemiology of a large longitudinal collection of clinical K. pneumoniae isolates from the H301 hospital in Beijing, China. Overall, the population was highly diverse, although some clones were predominant. Strains belonging to clonal group (CG) 258 were dominant, and represented the majority of carbapenemase-producers. While CG258 strains showed high diversity, one clone, ST11-KL47, represented the majority of isolates, and was highly associated with the KPC-2 carbapenemase and several virulence factors, including a virulence plasmid. The second dominant clone was CG23, which is the major hv clone globally. While it is usually susceptible to multiple antibiotics, we found some isolates harbouring MDR plasmids encoding for ESBLs and carbapenemases. We also reported the local emergence of a recently described high-risk clone, ST383. Conversely to strains belonging to CG258, which are usually associated to KPC-2, ST383 strains seem to readily acquire carbapenemases of different types. Moreover, we found several ST383 strains carrying the hypervirulence plasmid. Overall, we detected about 5 % of simultaneous carriage of AMR genes (ESBLs or carbapenemases) and hypervirulence genes. Tracking the emergence and evolution of such strains, causing severe infections with limited treatment options, is fundamental in order to understand their origin and evolution and to limit their spread. This article contains data hosted by Microreact.


Sign in / Sign up

Export Citation Format

Share Document