scholarly journals Massively parallel transposon mutagenesis identifies temporally essential genes for biofilm formation in Escherichia coli

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Emma R. Holden ◽  
Muhammad Yasir ◽  
A. Keith Turner ◽  
John Wain ◽  
Ian G. Charles ◽  
...  

Biofilms complete a life cycle where cells aggregate, grow and produce a structured community before dispersing to colonize new environments. Progression through this life cycle requires temporally controlled gene expression to maximize fitness at each stage. Previous studies have largely focused on identifying genes essential for the formation of a mature biofilm; here, we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress, a massively parallel transposon mutagenesis approach using transposon-located promoters to assay the impact of disruption or altered expression of all genes in the genome on biofilm formation. We identified 48 genes that affected the fitness of cells growing in a biofilm, including genes with known roles and those not previously implicated in biofilm formation. Regulation of type 1 fimbriae and motility were important at all time points, adhesion and motility were important for the early biofilm, whereas matrix production and purine biosynthesis were only important as the biofilm matured. We found strong temporal contributions to biofilm fitness for some genes, including some where expression changed between being beneficial or detrimental depending on the stage at which they are expressed, including dksA and dsbA. Novel genes implicated in biofilm formation included zapE and truA involved in cell division, maoP in chromosome organization, and yigZ and ykgJ of unknown function. This work provides new insights into the requirements for successful biofilm formation through the biofilm life cycle and demonstrates the importance of understanding expression and fitness through time.

2020 ◽  
Author(s):  
Emma R Holden ◽  
Muhammad Yasir ◽  
A Keith Turner ◽  
John Wain ◽  
Ian G. Charles ◽  
...  

AbstractBiofilms complete a life cycle where cells aggregate, grow and produce a structured community before dispersing to seed biofilms in new environments. Progression through this life cycle requires controlled temporal gene expression to maximise fitness at each stage. Previous studies have focused on the essential genome for the formation of a mature biofilm, but here we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress; a massively parallel transposon mutagenesis approach using transposon-located promoters to assay expression of all genes in the genome. We determined how gene essentiality and expression affects the fitness of E. coli growing as a biofilm on glass beads after 12, 24 and 48 hours. A selection of genes identified as important were then validated independently by assaying biofilm biomass, aggregation, curli biosynthesis and adhesion ability of defined mutants. We identified 48 genes that affected biofilm fitness including genes with known roles and those not previously implicated in biofilm formation. Regulation of type 1 fimbriae and motility were important at all time points. Adhesion and motility were important for the early biofilm, whereas matrix production and purine biosynthesis were only important as the biofilm matured. We found strong temporal contributions to biofilm fitness for some genes including some which were both beneficial and detrimental depending on the stage at which they are expressed, including dksA and dsbA. Novel genes implicated in biofilm formation included ychM and truA involved in cell division, crfC and maoP in DNA housekeeping and yigZ and ykgJ of unknown function. This work provides new insights into the requirements for successful biofilm formation through the biofilm life cycle and demonstrates the importance of understanding expression and fitness through time.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1007
Author(s):  
Chun-Hung Moy ◽  
Lian-See Tan ◽  
Noor Fazliani Shoparwe ◽  
Azmi Mohd Shariff ◽  
Jully Tan

Plastics are used for various applications, including in the food and beverage industry, for the manufacturing of plastic utensils and straws. The higher utilization of plastic straws has indirectly resulted in the significant disposal of plastic waste, which has become a serious environmental issue. Alternatively, bio-plastic and paper straws have been introduced to reduce plastic waste. However, limited studies are available on the environmental assessment of drinking straws. Life cycle assessment (LCA) studies for bio-plastic and paper straws have not been comprehensively performed previously. Therefore, the impact of both bio-plastic and paper straws on the environment are quantified and compared in this study. Parameters, such as the global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), were evaluated. The input–output data of the bio-plastic and paper straws processes from a gate-to-grave analysis were obtained from the literature and generated using the SuperPro Designer V9 process simulator. The results show that bio-plastic straws, which are also known as polylactic acid (PLA) straws, had reduced environmental impacts compared to paper straws. The outcomes of this work provide an insight into the application of bio-plastic and paper straws in effectively reducing the impact on the environment and in promoting sustainability, especially from the perspective of Malaysia.


mSphere ◽  
2021 ◽  
Author(s):  
Adrianne N. Edwards ◽  
Caitlin L. Willams ◽  
Nivedita Pareek ◽  
Shonna M. McBride ◽  
Rita Tamayo

Many bacterial organisms utilize the small signaling molecule cyclic diguanylate (c-di-GMP) to regulate important physiological processes, including motility, toxin production, biofilm formation, and colonization. c-di-GMP inhibits motility and toxin production and promotes biofilm formation and colonization in the anaerobic, gastrointestinal pathogen Clostridioides difficile . However, the impact of c-di-GMP on C. difficile spore formation, a critical step in this pathogen’s life cycle, is unknown.


2020 ◽  
Vol 7 (6) ◽  
pp. 911-914
Author(s):  
Allyson S Hughes ◽  
Jeoffrey Bispham ◽  
Ludi Fan ◽  
Magaly Nieves-Perez ◽  
Alicia H McAuliffe-Fogarty

Limited research exists regarding the burdens associated with type 1 diabetes (T1D). The study’s objective was to understand the impact of T1D from people with T1D and caregivers of minors with T1D. Six focus groups were conducted, with a total of 31 participants. Participants included people with T1D, ages 23 to 72 (n = 17) and caregivers ages 34 to 55 (n = 14). Participants were recruited from T1D Exchange Glu. People with T1D reported time spent managing diabetes had greatest impact, while caregivers reported financial and employment sacrifices as most impactful. Our findings provide insight into the real-world daily impact of diabetes.


2008 ◽  
Vol 76 (7) ◽  
pp. 3337-3345 ◽  
Author(s):  
David A. Rosen ◽  
Jerome S. Pinkner ◽  
Jennifer M. Jones ◽  
Jennifer N. Walker ◽  
Steven Clegg ◽  
...  

ABSTRACT Klebsiella pneumoniae is an important cause of urinary tract infection (UTI), but little is known about its pathogenesis in vivo. The pathogenesis of the K. pneumoniae cystitis isolate TOP52 was compared to that of the uropathogenic Escherichia coli (UPEC) isolate UTI89 in a murine cystitis model. Bladder and kidney titers of TOP52 were lower than those of UTI89 at early time points but similar at later time points. TOP52, like UTI89, formed biofilm-like intracellular bacterial communities (IBCs) within the murine bladder, albeit at significantly lower levels than UTI89. Additionally, filamentation of TOP52 was observed, a process critical for UTI89 evasion of neutrophil phagocytosis and persistence in the bladder. Thus, the IBC pathway is not specific to UPEC alone. We investigated if differences in type 1 pilus expression may explain TOP52's early defect in vivo. The type 1 pilus operon is controlled by recombinase-mediated (fimE, fimB, and fimX) phase variation of an invertible promoter element. We found that K. pneumoniae carries an extra gene of unknown function at the 3′ end of its type 1 operon, fimK, and the genome lacks the recombinase fimX. A deletion mutant of fimK was constructed, and TOP52 ΔfimK had higher titers and formed more IBCs in the murine cystitis model than wild type. The loss of fimK or expression of E. coli fimX from a plasmid in TOP52 resulted in a larger phase-ON population and higher expression levels of type 1 pili and gave TOP52 the ability to form type 1-dependent biofilms. Complementation with pfimK decreased type 1 pilus expression and biofilm formation of TOP52 ΔfimK and decreased UTI89 biofilm formation. Thus, K. pneumoniae appears programmed for minimal expression of type 1 pili, which may explain, in part, why K. pneumoniae is a less prevalent etiologic agent of UTI than UPEC.


Author(s):  
Ruxandra Calapod Ioana ◽  
Irina Bojoga ◽  
Duta Simona Gabriela ◽  
Ana-Maria Stancu ◽  
Amalia Arhire ◽  
...  

Author(s):  
Larisa Dmitrievna Popovich ◽  
Svetlana Valentinovna Svetlichnaya ◽  
Aleksandr Alekseevich Moiseev

Diabetes – a disease in which the effect of the treatment substantially depends on the patient. Known a study showed that the use of glucometers with the technology of three-color display of test results facilitates self-monitoring of blood sugar and leads to a decrease in glycated hemoglobin (HbAlc). Purpose of the study: to modeling the impact of using of a glucometer with a color-coded display on the clinical outcomes of diabetes mellitus and calculating, the potential economic benefits of reducing the hospitalization rate of patients with diabetes. Material and methods. Based on data from two studies (O. Schnell et al. and M. Baxter et al.) simulation of the reduction in the number of complications with the use of a glucometer with a color indication. In a study by O. Schnell et al. a decrease of HbA1c by 0.69 percent is shown when using the considered type of glucometers, which was the basis of the model. Results. In the model, the use of a glucometer with a color-coded display for type 1 diabetes led to a decrease in the total number of complications by 9.2 thousand over 5 years per a cohort of 40 thousand patients with different initial levels of HbA1c. In a cohort of 40 thousand patients with type 2 diabetes, the simulated number of prevented complications was 1.7 thousand over 5 years. When extrapolating these data to all patients with diabetes included in the federal register of diabetes mellitus (FRD), the number of prevented complications was 55.4 thousand cases for type 1 diabetes and 67.1 thousand cases for type 2 diabetes. The possible economic effect from the use of the device by all patients with a diagnosis of diabetes, which are included in the FRD, estimated at 1.5 billion rubles for a cohort of patients with type 1 diabetes and 5.3 billion rubles for patients with type 2 diabetes. Conclusion. Improving the effectiveness of self-monitoring, which is the result of the use of glucometers with color indicators, can potentially significantly reduce the incidence of complications in diabetes and thereby provide significant economic benefits to society.


Sign in / Sign up

Export Citation Format

Share Document