scholarly journals SMc01553 is the sixth acyl carrier protein in Sinorhizobium meliloti 1021

Microbiology ◽  
2010 ◽  
Vol 156 (1) ◽  
pp. 230-239 ◽  
Author(s):  
Yadira Dávila-Martínez ◽  
Ana Laura Ramos-Vega ◽  
Sandra Contreras-Martínez ◽  
Sergio Encarnación ◽  
Otto Geiger ◽  
...  

Acyl carrier proteins (ACPs) are required for the transfer of acyl intermediates during fatty acid and polyketide syntheses. In Sinorhizobium meliloti 1021 there are five known ACPs: AcpP, NodF, AcpXL, the ACP domain in RkpA and SMb20651. The genome sequence of S. meliloti 1021 also reveals the ORF SMc01553, annotated as a putative ACP. smc01553 is part of a 6.6 kb DNA region that is duplicated in the chromosome and in the pSymb plasmid, the result of a recent duplication event. SMc01553 overexpressed in Escherichia coli was labelled in vivo with [3H]β-alanine, a biosynthetic building block of the 4′-phosphopantetheine prosthetic group of ACPs. The purified SMc01553 was modified with 4′-phosphopantetheine in the presence of S. meliloti holo-ACP synthase, and this modification resulted in a major conformational change of the protein structure, since the holo-form runs faster in native PAGE than the apo-form. SMc01553 could not be loaded with a malonyl group by malonyl-CoA-ACP transacylase from S. meliloti. Using RT-PCR we could show the presence of mRNA for SMc01553 and of the duplicated ORF SMb22007 in cultures of S. meliloti. However, a mutant in which the two duplicated regions were deleted did not show any different phenotype with respect to the wild-type in the free-living or symbiotic lifestyle.

Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Ana Laura Ramos-Vega ◽  
Yadira Dávila-Martínez ◽  
Christian Sohlenkamp ◽  
Sandra Contreras-Martínez ◽  
Sergio Encarnación ◽  
...  

Acyl carrier proteins (ACPs) are small acidic proteins that carry growing acyl chains during fatty acid or polyketide synthesis. In rhizobia, there are four different and well-characterized ACPs: AcpP, NodF, AcpXL and RkpF. The genome sequence of Sinorhizobium meliloti 1021 reveals two additional ORFs that possibly encode additional ACPs. One of these, smb20651, is located on the plasmid pSymB as part of an operon. The genes of the operon encode a putative asparagine synthetase (AsnB), the predicted ACP (SMb20651), a putative long-chain fatty acyl-CoA ligase (SMb20650) and a putative ammonium-dependent NAD+ synthetase (NadE1). When SMb20651 was overexpressed in Escherichia coli, [3H]β-alanine, a biosynthetic building block of 4′-phosphopantetheine, was incorporated into the protein in vivo. The purified SMb20651 was modified with 4′-phosphopantetheine in the presence of S. meliloti holo-ACP synthase (AcpS). Also, holo-SMb20651 was modified in vitro with a malonyl group by malonyl CoA-ACP transacylase. In E. coli, coexpression of SMb20651 together with other proteins such as AcpS and SMb20650 led to the formation of additional forms of SMb20651. In this bacterium, acylation of SMb20651 with C12 : 0 or C18 : 0 fatty acids was detected, demonstrating that this protein is involved in fatty acid biosynthesis or transfer. Expression of SMb20651 was detected in S. meliloti as holo-SMb20651 and acyl-SMb20651.


1998 ◽  
Vol 180 (18) ◽  
pp. 4950-4954 ◽  
Author(s):  
Guido Epple ◽  
Koen M. G. M. van der Drift ◽  
Jane E. Thomas-Oates ◽  
Otto Geiger

ABSTRACT Rhizobial capsular polysaccharides (RKPs) play an important role in the development of a nitrogen-fixing symbiosis with the plant host and in Sinorhizobium meliloti AK631 functionalrkpABCDEF genes are required for the production of RKPs. After cloning the rkpF gene, we overexpressed and purified the derived protein product (RkpF) in Escherichia coli. Like acyl carrier protein (ACP), the RkpF protein can be labeled in vivo with radioactive β-alanine added to the growth medium. If homogeneous RkpF protein is incubated with radiolabeled coenzyme A in the presence of purified holo-ACP synthase from E. coli, an in vitro transfer of 4′-phosphopantetheine to the RkpF protein can be observed. The conversion from apo-RkpF protein to holo-RkpF protein seems to go along with a major conformational change of the protein structure, because the holo-RkpF protein runs significantly faster on native polyacrylamide gel electrophoresis than the apo-RkpF protein. Electrospray mass spectrometric analysis reveals a mass of 9,585 for the apo-RkpF protein and a mass of 9,927 for the holo-RkpF protein. Our data show that RkpF is a novel ACP.


2010 ◽  
Vol 54 (3) ◽  
pp. 1374-1377 ◽  
Author(s):  
Jacob Thomas ◽  
John E. Cronan

ABSTRACT Growth inhibition by the pantothenate analog N-pentylpantothenamide (N5-Pan) has been attributed to the accumulation of acyl carrier protein carrying a prosthetic group modified by incorporation of N5-Pan. This was attributed to an inability of the AcpH acyl carrier protein phosphodiesterase to cleave the N5-Pan-modified prosthetic group from the protein moiety. We report that AcpH readily removes the N5-Pan-modified prosthetic group both in vivo and in vitro and show that N5-Pan blocks coenzyme A synthesis.


1981 ◽  
Vol 199 (1) ◽  
pp. 221-226 ◽  
Author(s):  
J Sanchez ◽  
J L Harwood

The synthesis of lipids and acyl thioesters was studied in microsomal preparations from germinating pea (Pisum sativum cv. Feltham First) seeds. Under conditions of maximal synthesis (in the presence of exogenous acyl-carrier protein) acyl-acyl-carrier proteins accounted for about half the total incorporation from [14C]malonyl-CoA. Decreasing the concentrations of exogenous acyl-carrier protein lowered the overall synthesis of fatty acids by decreasing, almost exclusively, the radioactivity associated with acyl-acyl-carrier proteins. A time-course experiment showed that acyl-acyl-carrier proteins accumulated most of the radioactive label at the beginning of the incubation but, eventually, the amount of radioactivity in that fraction decreased, while a simultaneous increase in the acyl-CoA and lipid fractions was noticed. Addition of exogenous CoA (1 mM) produced a decrease of total incorporation, but an increase in the radioactivity incorporated into acyl-CoA. The microsomal preparations synthesized saturated fatty acids up to C20, including significant proportions of pentadecanoic acid and heptadecanoic acid. Synthesis of these ‘odd-chain’ fatty acids only took place in the microsomal fraction. In contrast, when the 18,000g supernatant (containing the microsomal and soluble fractions) was incubated with [14C]malonyl-CoA, the radioactive fatty acid and acyl classes closely resembled the patterns produced by germinating in the presence of [14C]acetate in vivo. The results are discussed in relation to the role of acyl thioesters in the biosynthesis of plant lipids.


2014 ◽  
Vol 460 (2) ◽  
pp. 157-163 ◽  
Author(s):  
John E. Cronan

ACPs (acyl carrier proteins) play essential roles in the synthesis of fatty acids, polyketides and non-ribosomal polypeptides. ACP function requires the modification of the protein by attachment of 4′-phosphopantetheine to a conserved serine residue. The phosphopantetheine thiol acts to tether the starting materials and intermediates as their thioesters. ACPs are small highly soluble proteins composed of four α-helices. The helices form a bundle that acts as a hydrophobic sleeve that sequesters the acyl chains and activated thioesters from solvent. However, in the synthesis of fatty acids and complex lipids the enzymes of the pathway must access the thioester and the proximal carbon atoms in order to perform the needed chemistry. How such access is provided without exposure of the acyl chains to solvent has been a longstanding question due to the lack of acyl-ACP–enzyme complexes, a situation generally attributed to the brevity of the interactions of acyl-ACPs with their cognate enzymes. As discussed in the present review the access question has now been answered by four recent crystal structures, each of which shows that the entire acyl chain plus the 4′-phosphopantetheine prosthetic group partitions from the ACP hydrophobic sleeve into a hydrophobic pocket or groove of the enzyme protein, a process termed chain flipping.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


FEBS Letters ◽  
2006 ◽  
Vol 580 (2) ◽  
pp. 697-702 ◽  
Author(s):  
Weizhi Liu ◽  
Cong Han ◽  
Lihong Hu ◽  
Kaixian Chen ◽  
Xu Shen ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Huimin Wang ◽  
Junheng Liang ◽  
Qianwen Yue ◽  
Long Li ◽  
Yan Shi ◽  
...  

Abstract Background Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. Results The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. Conclusions These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,


Sign in / Sign up

Export Citation Format

Share Document