scholarly journals Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions

Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1964-1973 ◽  
Author(s):  
Suelen B. Costa ◽  
Ana Carolina C. Campos ◽  
Ana Claudia M. Pereira ◽  
Ana Luiza de Mattos-Guaraldi ◽  
Raphael Hirata Júnior ◽  
...  

During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind− did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the oxygen tension. In conclusion, it was proven that bacterial interaction with abiotic surfaces can lead to SOS induction and associated filamentation. Moreover, we verified that endonuclease V is involved in biofilm formation.

2006 ◽  
Vol 188 (4) ◽  
pp. 1316-1331 ◽  
Author(s):  
Christophe Beloin ◽  
Kai Michaelis ◽  
Karin Lindner ◽  
Paolo Landini ◽  
Jörg Hacker ◽  
...  

ABSTRACT We investigated the influence of regulatory and pathogenicity island-associated factors (Hha, RpoS, LuxS, EvgA, RfaH, and tRNA5 Leu) on biofilm formation by uropathogenic Escherichia coli (UPEC) strain 536. Only inactivation of rfaH, which encodes a transcriptional antiterminator, resulted in increased initial adhesion and biofilm formation by E. coli 536. rfaH inactivation in nonpathogenic E. coli K-12 isolate MG1655 resulted in the same phenotype. Transcriptome analysis of wild-type strain 536 and an rfaH mutant of this strain revealed that deletion of rfaH correlated with increased expression of flu orthologs. flu encodes antigen 43 (Ag43), which mediates autoaggregation and biofilm formation. We confirmed that deletion of rfaH leads to increased levels of flu and flu-like transcripts in E. coli K-12 and UPEC. Supporting the hypothesis that RfaH represses biofilm formation through reduction of the Ag43 level, the increased-biofilm phenotype of E. coli MG1655rfaH was reversed upon inactivation of flu. Deletion of the two flu orthologs, however, did not modify the behavior of mutant 536rfaH. Our results demonstrate that the strong initial adhesion and biofilm formation capacities of strain MG1655rfaH are mediated by both increased steady-state production of Ag43 and likely increased Ag43 presentation due to null rfaH-dependent lipopolysaccharide depletion. Although the roles of rfaH in the biofilm phenotype are different in UPEC strain 536 and K-12 strain MG1655, this study shows that RfaH, in addition to affecting the expression of bacterial virulence factors, also negatively controls expression and surface presentation of Ag43 and possibly another Ag43-independent factor(s) that mediates cell-cell interactions and biofilm formation.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


2019 ◽  
Author(s):  
Philippe Vogeleer ◽  
Antony T. Vincent ◽  
Samuel M. Chekabab ◽  
Steve J. Charette ◽  
Alexey Novikov ◽  
...  

ABSTRACTIn open environments such as water, enterohemorrhagicEscherichia coliO157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. The phosphate-specific transport (Pst) system is the high-affinity Pi transporter. In the Δpstmutant, PhoB is constitutively activated and regulates the expression of genes from the Pho regulon. InE. coliO157:H7, the Δpstmutant, biofilm, and autoagglutination were increased. In the double-deletion mutant ΔpstΔphoB, biofilm and autoagglutination were similar to the wild-type strain, suggesting that PhoB is involved. We investigated the relationship between PhoB activation and enhanced biofilm formation by screening a transposon mutant library derived from Δpstmutant for decreased autoagglutination and biofilms mutants. Lipopolysaccharide (LPS) genes involved in the synthesis of the LPS core were identified. Transcriptomic studies indicate the influence of Pi-starvation andpstmutation on LPS biosynthetic gene expression. LPS analysis indicated that the O-antigen was deficient in the Δpstmutant. Interestingly,waaH, encoding a glycosyltransferase associated with LPS modifications inE. coliK-12, was highly expressed in the Δpstmutant ofE. coliO157:H7. Deletion ofwaaHfrom the Δpstmutant and from the wild-type strain grown in Pi-starvation conditions decreased the biofilm formation but without affecting LPS. Our findings suggest that LPS core is involved in the autoagglutination and biofilm phenotypes of the Δpstmutant and that WaaH plays a role in biofilm in response to Pi-starvation. This study highlights the importance of Pi-starvation in biofilm formation of E. coli O157:H7, which may affect its transmission and persistence.IMPORTANCEEnterohemorrhagicEscherichia coliO157:H7 is a human pathogen responsible for bloody diarrhea and renal failures. In the environment, O157:H7 can survive for prolonged periods of time under nutrient-deprived conditions. Biofilms are thought to participate in this environmental lifestyle. Previous reports have shown that the availability of extracellular inorganic phosphate (Pi) affected bacterial biofilm formation; however, nothing was known about O157:H7 biofilm formation. Our results show that O157:H7 membrane undergoes modifications upon PhoB activation leading to increased biofilm formation. A mutation in the Pst system results in reduced amount of the smooth type LPS and that this could influence the biofilm composition. This demonstrates how theE. coliO157:H7 adapts to Pi starvation increasing its ability to occupy different ecological niches.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Charles AR Cotton ◽  
Iria Bernhardsgrütter ◽  
Hai He ◽  
Simon Burgener ◽  
Luca Schulz ◽  
...  

The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.


2013 ◽  
Vol 79 (20) ◽  
pp. 6362-6368 ◽  
Author(s):  
Ying Xu ◽  
Bing Chen ◽  
Hongjun Chao ◽  
Ning-Yi Zhou

ABSTRACTEscherichia coliK-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome,mhpTwas proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated thatmhpTis essential for 3HPP catabolism inE. coliK-12 W3110 at pH 8.2. Uptake assays with14C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpTcontaining recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpTcontaining the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital forE. coliK-12 W3110 growth on this substrate under basic conditions.


2010 ◽  
Vol 54 (10) ◽  
pp. 4262-4268 ◽  
Author(s):  
Renu Singh ◽  
Kimberly R. Ledesma ◽  
Kai-Tai Chang ◽  
Vincent H. Tam

ABSTRACT Genetic mutations are one of the major mechanisms by which bacteria acquire drug resistance. One of the known mechanisms for inducing mutations is the SOS response system. We investigated the effect of disrupting recA, an inducer of the SOS response, on resistance development using an in vitro hollow-fiber infection model. A clinical Staphylococcus aureus isolate and a laboratory wild-type strain of Escherichia coli were compared to their respective recA-deleted isogenic daughter isolates. Approximately 2 × 105 CFU/ml of bacteria were subjected to escalating levofloxacin exposures for up to 120 h. Serial samples were obtained to ascertain simulated drug exposures and total and resistant bacterial burdens. Quinolone resistance determining regions of gyrA and grlA (parC for E. coli) in levofloxacin-resistant isolates were sequenced to confirm the mechanism of resistance. The preexposure MICs of the recA-deleted isolates were 4-fold lower than those of their respective parents. In S. aureus, a lower area under the concentration-time curve over 24 h at steady state divided by the MIC (AUC/MIC) was required to suppress resistance development in the recA-deleted mutant (an AUC/MIC of >23 versus an AUC/MIC of >32 was necessary in the mutant versus the parent isolate, respectively), and a prominent difference in the total bacterial burden was observed at 72 h. Using an AUC/MIC of approximately 30, E. coli resistance emergence was delayed by 24 h in the recA-deleted mutant. Diverse mutations in gyrA were found in levofloxacin-resistant isolates recovered. Disruption of recA provided additional benefits apart from MIC reduction, attesting to its potential role for pharmacologic intervention. The clinical relevance of our findings warrants further investigations.


2005 ◽  
Vol 51 (8) ◽  
pp. 671-683 ◽  
Author(s):  
Joe J Harrison ◽  
Howard Ceri ◽  
Erin A Badry ◽  
Nicole J Roper ◽  
Kerry L Tomlin ◽  
...  

In this descriptive study, we used Escherichia coli twin-arginine translocase (tat) mutants to distinguish antibiotic tolerance from the formation of mature biofilm structure. Biofilm formation by wild-type and Δtat strains of E. coli was evaluated using viable cell counts, scanning electron microscopy, and confocal laser-scanning microscopy. Escherichia coli Δtat mutants had an impaired ability to form biofilms when grown in rich or minimal media. These mutants produced disorganized layers and cell aggregates with significantly decreased cell density relative to the wild-type strain. In contrast, wild-type E. coli grown under similar test conditions formed highly structured, surface-adherent communities. We thus determined if this decreased biofilm formation by E. coli Δtat mutants may result in lowered tolerance to antimicrobials. When grown in rich media, planktonic Δtat mutants were hypersensitive to some metals, detergents, and antibiotics. However, the corresponding biofilms were about as resilient as the wild-type strain. In contrast, both planktonic cells and biofilms of the ΔtatABC strain grown in minimal media were hypersensitive to many antimicrobials. Remarkably, these biofilms remained up to 365 times more tolerant to β-lactams than corresponding planktonic cells. Our data suggest that the twin-arginine translocase may play a contributing role in the antimicrobial tolerance, structural organization, and formation of mature E. coli biofilms under nutrient-limited conditions. However, the high tolerance of the ΔtatABC strain to bactericidal concentrations of antimicrobials indicates that mature biofilm structure may not be required for surface-adherent E. coli to survive exposure to these lethal factors.Key words: biofilm structure, twin-arginine translocase (tat), Escherichia coli, antimicrobial susceptibility/tolerance.


1982 ◽  
Vol 152 (2) ◽  
pp. 919-923
Author(s):  
J M Schoemaker ◽  
G W Henderson ◽  
A Markovitz

Mutation in the gene lon (capR) of Escherichia coli K-12 causes conditional inhibition of cell division. Two-dimensional gel electrophoresis was used to compare polypeptides from isogenic capR+ and capR strains. One polypeptide was present in the capR strain but absent in the wild-type strain, and it was proteolyzed when the pure capR+ protease was added to the capR extract. This polypeptide could only be detected in the capR strain when cell division was inhibited, and its synthesis was independent of the SOS response.


2006 ◽  
Vol 188 (1) ◽  
pp. 305-316 ◽  
Author(s):  
Andrés F. González Barrios ◽  
Rongjun Zuo ◽  
Yoshifumi Hashimoto ◽  
Li Yang ◽  
William E. Bentley ◽  
...  

ABSTRACT The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass and thickness and reduced the interstitial space between microcolonies. As expected, the addition of AI-2 to cells which lack the ability to transport AI-2 (lsr null mutant) failed to stimulate biofilm formation. Since the addition of AI-2 increased cell motility through enhanced transcription of five motility genes, we propose that AI-2 stimulates biofilm formation and alters its architecture by stimulating flagellar motion and motility. It was also found that the uncharacterized protein B3022 regulates this AI-2-mediated motility and biofilm phenotype through the two-component motility regulatory system QseBC. Deletion of b3022 abolished motility, which was restored by expressing b3022 in trans. Deletion of b3022 also decreased biofilm formation significantly, relative to the wild-type strain in three media (46 to 74%) in 96-well plates, as well as decreased biomass (8-fold) and substratum coverage (19-fold) in continuous-flow cells with minimal medium (growth rate not altered and biofilm restored by expressing b3022 in trans). Deleting b3022 changed the wild-type biofilm architecture from a thick (54-μm) complex structure to one that contained only a few microcolonies. B3022 positively regulates expression of qseBC, flhD, fliA, and motA, since deleting b3022 decreased their transcription by 61-, 25-, 2.4-, and 18-fold, respectively. Transcriptome analysis also revealed that B3022 induces crl (26-fold) and flhCD (8- to 27-fold). Adding AI-2 (6.4 μM) increased biofilm formation of wild-type K-12 MG1655 but not that of the isogenic b3022, qseBC, fliA, and motA mutants. Adding AI-2 also increased motA transcription for the wild-type strain but did not stimulate motA transcription for the b3022 and qseB mutants. Together, these results indicate AI-2 induces biofilm formation in E. coli through B3022, which then regulates QseBC and motility; hence, b3022 has been renamed the motility quorum-sensing regulator gene (the mqsR gene).


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1683-1689 ◽  
Author(s):  
Titia H. Plantinga ◽  
Chris van der Does ◽  
Danuta Tomkiewicz ◽  
Geertje van Keulen ◽  
Wil N. Konings ◽  
...  

Binding-protein-dependent secondary transporters make up a unique transport protein family. They use a solute-binding protein in proton-motive-force-driven transport. Only a few systems have been functionally analysed. The yiaMNO genes of Escherichia coli K-12 encode one family member that transports the rare pentose l-xylulose. Its physiological role is unknown, since wild-type E. coli K-12 does not utilize l-xylulose as sole carbon source. Deletion of the yiaMNO genes in E. coli K-12 strain MC4100 resulted in remarkable changes in the transition from exponential growth to the stationary phase, high-salt survival and biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document