scholarly journals Galleria mellonella as an alternative model of Coxiella burnetii infection

Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1175-1181 ◽  
Author(s):  
I. H. Norville ◽  
M. G. Hartley ◽  
E. Martinez ◽  
F. Cantet ◽  
M. Bonazzi ◽  
...  

Coxiella burnetii is a Gram-negative intracellular bacterium and is the causative agent of the zoonotic disease Q fever. Several rodent and non-human primate models of virulent phase I C. burnetii [Nine Mile (NM)I] have been developed, and have been used to determine the efficacy of antibiotics and vaccine candidates. However, there are several advantages to using insect models to study host–microbe interactions, such as reduced animal use, lowered cost and ease of manipulation in high containment. In addition, many laboratories use the avirulent phase II C. burnetii clone (NMII) to study cellular interactions and identify novel virulence determinants using genetic manipulation. We report that larvae of the greater wax moth, Galleria mellonella, were susceptible to infection with both C. burnetii NMI and NMII. Following subcutaneous infection, we report that intracellular bacteria were present within haemocytes and that larval death occurred in a dose-dependent manner. Additionally, we have used the model to characterize the role of the type 4 secretion system in C. burnetii NMII and to determine antibiotic efficacy in a non-mammalian model of disease.

2019 ◽  
Author(s):  
Winarti Achmad Sarmin Djainal ◽  
Khalid Shahin ◽  
Alexandra Adams ◽  
Andrew Desbois

Abstract Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.


2016 ◽  
Vol 113 (23) ◽  
pp. E3260-E3269 ◽  
Author(s):  
Eric Martinez ◽  
Julie Allombert ◽  
Franck Cantet ◽  
Anissa Lakhani ◽  
Naresh Yandrapalli ◽  
...  

The Q fever bacterium Coxiella burnetii replicates inside host cells within a large Coxiella-containing vacuole (CCV) whose biogenesis relies on the Dot/Icm-dependent secretion of bacterial effectors. Several membrane trafficking pathways contribute membranes, proteins, and lipids for CCV biogenesis. These include the endocytic and autophagy pathways, which are characterized by phosphatidylinositol 3-phosphate [PI(3)P]-positive membranes. Here we show that the C. burnetii secreted effector Coxiella vacuolar protein B (CvpB) binds PI(3)P and phosphatidylserine (PS) on CCVs and early endosomal compartments and perturbs the activity of the phosphatidylinositol 5-kinase PIKfyve to manipulate PI(3)P metabolism. CvpB association to early endosome triggers vacuolation and clustering, leading to the channeling of large PI(3)P-positive membranes to CCVs for vacuole expansion. At CCVs, CvpB binding to early endosome- and autophagy-derived PI(3)P and the concomitant inhibition of PIKfyve favor the association of the autophagosomal machinery to CCVs for optimal homotypic fusion of the Coxiella-containing compartments. The importance of manipulating PI(3)P metabolism is highlighted by mutations in cvpB resulting in a multivacuolar phenotype, rescuable by gene complementation, indicative of a defect in CCV biogenesis. Using the insect model Galleria mellonella, we demonstrate the in vivo relevance of defective CCV biogenesis by highlighting an attenuated virulence phenotype associated with cvpB mutations.


2020 ◽  
Vol 6 (3) ◽  
pp. 155
Author(s):  
Maritza Torres ◽  
Hans de Cock ◽  
Adriana Marcela Celis Ramírez

Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host–microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host–microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Miku Kuba ◽  
Nitika Neha ◽  
Patrice Newton ◽  
Yi Wei Lee ◽  
Vicki Bennett-Wood ◽  
...  

ABSTRACT The zoonotic bacterial pathogen Coxiella burnetii is the causative agent of Q fever, a febrile illness which can cause a serious chronic infection. C. burnetii is a unique intracellular bacterium which replicates within host lysosome-derived vacuoles. The ability of C. burnetii to replicate within this normally hostile compartment is dependent on the activity of the Dot/Icm type 4B secretion system. In a previous study, a transposon mutagenesis screen suggested that the disruption of the gene encoding the novel protein CBU2072 rendered C. burnetii incapable of intracellular replication. This protein, subsequently named EirA (essential for intracellular replication A), is indispensable for intracellular replication and virulence, as demonstrated by infection of human cell lines and in vivo infection of Galleria mellonella. The putative N-terminal signal peptide is essential for protein function but is not required for localization of EirA to the bacterial inner membrane compartment and axenic culture supernatant. In the absence of EirA, C. burnetii remains viable but nonreplicative within the host phagolysosome, as coinfection with C. burnetii expressing native EirA rescues the replicative defect in the mutant strain. In addition, while the bacterial ultrastructure appears to be intact, there is an altered metabolic profile shift in the absence of EirA, suggesting that EirA may impact overall metabolism. Most strikingly, in the absence of EirA, Dot/Icm effector translocation was inhibited even when EirA-deficient C. burnetii replicated in the wild type (WT)-supported Coxiella containing vacuoles. EirA may therefore have a novel role in the control of Dot/Icm activity and represent an important new therapeutic target.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Winarti Achmad Sarmin Djainal ◽  
Khalid Shahin ◽  
Matthijs Metselaar ◽  
Alexandra Adams ◽  
Andrew P. Desbois

Abstract Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.


2019 ◽  
Author(s):  
Winarti Achmad Sarmin Djainal ◽  
Khalid Shahin ◽  
Alexandra Adams ◽  
Andrew Desbois

Abstract Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.


2013 ◽  
Vol 79 (13) ◽  
pp. 3986-3997 ◽  
Author(s):  
Sabina Leanti La Rosa ◽  
Pat G. Casey ◽  
Colin Hill ◽  
Dzung B. Diep ◽  
Ingolf F. Nes ◽  
...  

ABSTRACTCytolysin and gelatinase are prominent pathogenicity determinants associated with highly virulentEnterococcus faecalisstrains. In an effort to explore the expression profiles of these virulence traitsin vivo, we have employedE. faecalisvariants expressing theluxABCDEcassette under the control of either the P16S, cytolysin, or gelatinase promoter for infections ofGalleria mellonellacaterpillars and mice. Systemic infection ofG. mellonellawith bioluminescence-taggedE. faecalisMMH594 revealed temporal regulation of both gelatinase and cytolysin promoters and demonstrated that these traits were induced in response to the host environment. Gavage of mice pretreated perorally with antibiotics resulted in efficient colonization of the murine gastrointestinal tract (GIT) in a strain-dependent manner, where the commensal baby isolate EF62 was more persistent than the nosocomial isolate MMH594. A highly significant correlation (R2> 0.94) was found between bioluminescence and the CFU counts in mouse fecal samples. Both strains showed similar preferences for growth and persistence in the ileum, cecum, and colon. Cytolysin expression was uniform in these compartments of the intestinal lumen. In spite of high numbers (109CFU/g of intestinal matter) in the ileum, cecum, and colon, no evidence of translocation or systemic infection could be observed. In the murine intravenous infection model, cytolysin expression was readily detected in the liver, kidneys, and bladder. At 72 h postinfection, the highest bacterial loads were found in the liver, kidneys, and spleen, with organ-specific expression levels of cytolysin ∼400- and ∼900-fold higher in the spleen and heart, respectively, than in the liver and kidneys. Taken together, this system based on the bioluminescence imaging technology is established as a new, powerful method to monitor the differential regulation ofE. faecalisvirulence determinants and to study the spatiotemporal course of infection in living animals in real time.


2021 ◽  
Author(s):  
Jia Xuan Leong ◽  
Margot Raffeiner ◽  
Daniela Spinti ◽  
Gautier Langin ◽  
Mirita Franz-Wachtel ◽  
...  

AbstractBeyond its role in cellular homeostasis, autophagy is considered to play anti- and pro-microbial roles in host-microbe interactions, both in animals and plants. One of the prominent roles of anti-microbial autophagy in animals is to degrade intracellular pathogens or microbial molecules, in a process termed “xenophagy”. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. However, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that NBR1/Joka2-dependent selective autophagy functions in plant defence by degrading the bacterial type-III effector (T3E) XopL from Xanthomonas campestris pv. vesicatoria (Xcv). We show how XopL associates with the autophagy machinery and undergoes self-ubiquitination, subsequently triggering its own degradation by NBR1/Joka2-mediated selective autophagy. Intriguingly, Xcv is also able to suppress autophagy in a T3E-dependent manner by utilizing the same T3E XopL that interacts and degrades the autophagy component SH3P2 via its E3 ligase activity. Thus, XopL is able to escape its own degradation and promote pathogenicity of Xcv by inhibiting autophagy through SH3P2 depletion. Together, we reveal a novel phenomenon how NBR1/Joka2 contributes to anti-bacterial autophagy and provide a unique mechanism how a T3E undergoes self-modification to act as a bait to trap host cellular degradation machineries.Significant statementAutophagy has anti- and pro-microbial roles in host-microbe interactions. Its anti-microbial role is derived from its ability to degrade intracellular pathogens, termed “xenophagy”. The contribution of xenophagy to host-bacteria interactions in plants and its substrates remains elusive. Here, we reveal that NEIGHBOR OF BRCA1 (NBR1)-mediated autophagy has an anti-microbial role towards bacteria by degrading the type-III effector (T3E) XopL from Xanthomonas campestris pv. vesicatoria (Xcv). We unveil that the same T3E is able to perturb autophagy to escape its own degradation and to boost bacterial virulence. These findings highlight a novel role of xenophagy that is conserved across kingdoms and we offer new perspectives on how T3Es undergo self-modification to trap host cellular degradation pathways.


2019 ◽  
Author(s):  
Winarti Achmad Sarmin Djainal ◽  
Khalid Shahin ◽  
Alexandra Adams ◽  
Andrew Desbois

Abstract Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.


2020 ◽  
Vol 113 (3) ◽  
pp. 1110-1117 ◽  
Author(s):  
Suzan Kastamonuluoğlu ◽  
Kemal Büyükgüzel ◽  
Ender Büyükgüzel

Abstract Diet quality widely affects the survival, development, fecundity, longevity, and hatchability of insects. We used the greater wax moth Galleria mellonella (Linnaeus) to determine the effects of the antifungal, antibiotic terbinafine on some of its’ biological parameters. The effects of terbinafine on malondialdehyde (MDA) and protein carbonyl (PCO) contents and the activity of the detoxification enzyme, glutathione S-transferase (GST), in the midgut of seventh-instar larvae of G. mellonella were also investigated. The insects were reared on an artificial diet containing terbinafine at concentrations of 0.001, 0.01, 0.1, and 1 g. The survival rates at all development stages of G. mellonella were significantly decreased at all terbinafine concentrations. The females from a control diet produced 82.9 ± 18.1 eggs; however, this number was significantly reduced to 51.4 ± 9.6 in females given a 0.1 g terbinafine diet. The highest concentration of terbinafine (1 g) completely inhibited egg laying. Terbinafine significantly increased MDA content and GST activity in the midgut tissue of seventh-instar larvae in a dose-dependent manner. Relative to controls, these low dietary concentrations of terbinafine significantly increased midgut PCO content; a 0.1 g terbinafine concentration raised PCO content from 155.19 ± 21.8 to 737.17 ± 36.4 nmol/mg protein. This study shows concentration-dependent effects on the biological traits of the greater wax moth G. mellonella, including the oxidative status and detoxification capacity of the midgut. Low terbinafine concentrations may be possible for use as an antifungal agent in insect-rearing diets.


Sign in / Sign up

Export Citation Format

Share Document