scholarly journals EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii

2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Miku Kuba ◽  
Nitika Neha ◽  
Patrice Newton ◽  
Yi Wei Lee ◽  
Vicki Bennett-Wood ◽  
...  

ABSTRACT The zoonotic bacterial pathogen Coxiella burnetii is the causative agent of Q fever, a febrile illness which can cause a serious chronic infection. C. burnetii is a unique intracellular bacterium which replicates within host lysosome-derived vacuoles. The ability of C. burnetii to replicate within this normally hostile compartment is dependent on the activity of the Dot/Icm type 4B secretion system. In a previous study, a transposon mutagenesis screen suggested that the disruption of the gene encoding the novel protein CBU2072 rendered C. burnetii incapable of intracellular replication. This protein, subsequently named EirA (essential for intracellular replication A), is indispensable for intracellular replication and virulence, as demonstrated by infection of human cell lines and in vivo infection of Galleria mellonella. The putative N-terminal signal peptide is essential for protein function but is not required for localization of EirA to the bacterial inner membrane compartment and axenic culture supernatant. In the absence of EirA, C. burnetii remains viable but nonreplicative within the host phagolysosome, as coinfection with C. burnetii expressing native EirA rescues the replicative defect in the mutant strain. In addition, while the bacterial ultrastructure appears to be intact, there is an altered metabolic profile shift in the absence of EirA, suggesting that EirA may impact overall metabolism. Most strikingly, in the absence of EirA, Dot/Icm effector translocation was inhibited even when EirA-deficient C. burnetii replicated in the wild type (WT)-supported Coxiella containing vacuoles. EirA may therefore have a novel role in the control of Dot/Icm activity and represent an important new therapeutic target.

2019 ◽  
Vol 87 (12) ◽  
Author(s):  
A. E. Gregory ◽  
E. J. van Schaik ◽  
K. E. Russell-Lodrigue ◽  
A. P. Fratzke ◽  
J. E. Samuel

ABSTRACT Coxiella burnetii, the etiological agent of Q fever, is a Gram-negative bacterium transmitted to humans by inhalation of contaminated aerosols. Acute Q fever is often self-limiting, presenting as a febrile illness that can result in atypical pneumonia. In some cases, Q fever becomes chronic, leading to endocarditis that can be life threatening. The formalin-inactivated whole-cell vaccine (WCV) confers long-term protection but has significant side effects when administered to presensitized individuals. Designing new vaccines against C. burnetii remains a challenge and requires the use of clinically relevant modes of transmission in appropriate animal models. We have developed a safe and reproducible C. burnetii aerosol challenge in three different animal models to evaluate the effects of pulmonary acquired infection. Using a MicroSprayer aerosolizer, BL/6 mice and Hartley guinea pigs were infected intratracheally with C. burnetii Nine Mile phase I (NMI) and demonstrated susceptibility as determined by measuring bacterial growth in the lungs and subsequent dissemination to the spleen. Histological analysis of lung tissue showed significant pathology associated with disease, which was more severe in guinea pigs. Infection using large-particle aerosol (LPA) delivery was further confirmed in nonhuman primates, which developed fever and pneumonia. We also demonstrate that vaccinating mice and guinea pigs with WCV prior to LPA challenge is capable of eliciting protective immunity that significantly reduces splenomegaly and the bacterial burden in spleen and lung tissues. These data suggest that these models can have appreciable value in using the LPA delivery system to study pulmonary Q fever pathogenesis as well as designing vaccine countermeasures to C. burnetii aerosol transmission.


2013 ◽  
Vol 81 (12) ◽  
pp. 4604-4614 ◽  
Author(s):  
Alexandra Elliott ◽  
Ying Peng ◽  
Guoquan Zhang

ABSTRACTCoxiella burnetiiis an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity againstC. burnetiiinfection. This study focused on understanding the interaction betweenC. burnetiiand innate immune cellsin vitroandin vivo. Both virulentC. burnetiiNine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting thatC. burnetiican infect neutrophils, but infection is limited. Interestingly,C. burnetiiinside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot killC. burnetiiandC. burnetiimay be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response toC. burnetiinatural infection, SCID mice were exposed to aerosolizedC. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolizedC. burnetii. Studying the interaction betweenC. burnetiiand the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.


2016 ◽  
Vol 113 (23) ◽  
pp. E3260-E3269 ◽  
Author(s):  
Eric Martinez ◽  
Julie Allombert ◽  
Franck Cantet ◽  
Anissa Lakhani ◽  
Naresh Yandrapalli ◽  
...  

The Q fever bacterium Coxiella burnetii replicates inside host cells within a large Coxiella-containing vacuole (CCV) whose biogenesis relies on the Dot/Icm-dependent secretion of bacterial effectors. Several membrane trafficking pathways contribute membranes, proteins, and lipids for CCV biogenesis. These include the endocytic and autophagy pathways, which are characterized by phosphatidylinositol 3-phosphate [PI(3)P]-positive membranes. Here we show that the C. burnetii secreted effector Coxiella vacuolar protein B (CvpB) binds PI(3)P and phosphatidylserine (PS) on CCVs and early endosomal compartments and perturbs the activity of the phosphatidylinositol 5-kinase PIKfyve to manipulate PI(3)P metabolism. CvpB association to early endosome triggers vacuolation and clustering, leading to the channeling of large PI(3)P-positive membranes to CCVs for vacuole expansion. At CCVs, CvpB binding to early endosome- and autophagy-derived PI(3)P and the concomitant inhibition of PIKfyve favor the association of the autophagosomal machinery to CCVs for optimal homotypic fusion of the Coxiella-containing compartments. The importance of manipulating PI(3)P metabolism is highlighted by mutations in cvpB resulting in a multivacuolar phenotype, rescuable by gene complementation, indicative of a defect in CCV biogenesis. Using the insect model Galleria mellonella, we demonstrate the in vivo relevance of defective CCV biogenesis by highlighting an attenuated virulence phenotype associated with cvpB mutations.


2016 ◽  
Vol 30 (1) ◽  
pp. 115-190 ◽  
Author(s):  
Carole Eldin ◽  
Cléa Mélenotte ◽  
Oleg Mediannikov ◽  
Eric Ghigo ◽  
Matthieu Million ◽  
...  

SUMMARY Coxiella burnetii is the agent of Q fever, or “query fever,” a zoonosis first described in Australia in 1937. Since this first description, knowledge about this pathogen and its associated infections has increased dramatically. We review here all the progress made over the last 20 years on this topic. C. burnetii is classically a strict intracellular, Gram-negative bacterium. However, a major step in the characterization of this pathogen was achieved by the establishment of its axenic culture. C. burnetii infects a wide range of animals, from arthropods to humans. The genetic determinants of virulence are now better known, thanks to the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses. Q fever can be found worldwide, but the epidemiological features of this disease vary according to the geographic area considered, including situations where it is endemic or hyperendemic, and the occurrence of large epidemic outbreaks. In recent years, a major breakthrough in the understanding of the natural history of human infection with C. burnetii was the breaking of the old dichotomy between “acute” and “chronic” Q fever. The clinical presentation of C. burnetii infection depends on both the virulence of the infecting C. burnetii strain and specific risks factors in the infected patient. Moreover, no persistent infection can exist without a focus of infection. This paradigm change should allow better diagnosis and management of primary infection and long-term complications in patients with C. burnetii infection.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Laura F. Fielden ◽  
Jennifer H. Moffatt ◽  
Yilin Kang ◽  
Michael J. Baker ◽  
Chen Ai Khoo ◽  
...  

ABSTRACT Coxiella burnetii, the causative agent of Q fever, establishes a unique lysosome-derived intracellular niche termed the Coxiella-containing vacuole (CCV). The Dot/Icm-type IVB secretion system is essential for the biogenesis of the CCV and the intracellular replication of Coxiella. Effector proteins, translocated into the host cell through this apparatus, act to modulate host trafficking and signaling processes to facilitate CCV development. Here we investigated the role of CBU0077, a conserved Coxiella effector that had previously been observed to localize to lysosomal membranes. CBU0077 was dispensable for the intracellular replication of Coxiella in HeLa and THP-1 cells and did not appear to participate in CCV biogenesis. Intriguingly, native and epitope-tagged CBU0077 produced by Coxiella displayed specific punctate localization at host cell mitochondria. As such, we designated CBU0077 MceA (mitochondrial C oxiella effector protein A). Analysis of ectopically expressed MceA truncations revealed that the capacity to traffic to mitochondria is encoded within the first 84 amino acids of this protein. MceA is farnesylated by the host cell; however, this does not impact mitochondrial localization. Examination of mitochondria isolated from infected cells revealed that MceA is specifically integrated into the mitochondrial outer membrane and forms a complex of approximately 120 kDa. Engineering Coxiella to express either MceA tagged with 3×FLAG or MceA tagged with 2×hemagglutinin allowed us to perform immunoprecipitation experiments that showed that MceA forms a homo-oligomeric species at the mitochondrial outer membrane during infection. This research reveals that mitochondria are a bona fide target of Coxiella effectors and MceA is a complex-forming effector at the mitochondrial outer membrane during Coxiella infection.


2019 ◽  
Vol 476 (19) ◽  
pp. 2851-2867 ◽  
Author(s):  
Miku Kuba ◽  
Nitika Neha ◽  
David P. De Souza ◽  
Saravanan Dayalan ◽  
Joshua P. M. Newson ◽  
...  

Abstract Coxiella burnetii is a Gram-negative bacterium which causes Q fever, a complex and life-threatening infection with both acute and chronic presentations. C. burnetii invades a variety of host cell types and replicates within a unique vacuole derived from the host cell lysosome. In order to understand how C. burnetii survives within this intracellular niche, we have investigated the carbon metabolism of both intracellular and axenically cultivated bacteria. Both bacterial populations were shown to assimilate exogenous [13C]glucose or [13C]glutamate, with concomitant labeling of intermediates in glycolysis and gluconeogenesis, and in the TCA cycle. Significantly, the two populations displayed metabolic pathway profiles reflective of the nutrient availabilities within their propagated environments. Disruption of the C. burnetii glucose transporter, CBU0265, by transposon mutagenesis led to a significant decrease in [13C]glucose utilization but did not abolish glucose usage, suggesting that C. burnetii express additional hexose transporters which may be able to compensate for the loss of CBU0265. This was supported by intracellular infection of human cells and in vivo studies in the insect model showing loss of CBU0265 had no impact on intracellular replication or virulence. Using this mutagenesis and [13C]glucose labeling approach, we identified a second glucose transporter, CBU0347, the disruption of which also showed significant decreases in 13C-label incorporation but did not impact intracellular replication or virulence. Together, these analyses indicate that C. burnetii may use multiple carbon sources in vivo and exhibits greater metabolic flexibility than expected.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Lindsey Ledbetter ◽  
Rama Cherla ◽  
Catherine Chambers ◽  
Yan Zhang ◽  
Guoquan Zhang

ABSTRACT Coxiella burnetii is an obligate intracellular Gram-negative bacterium which causes human Q fever. An acidified citrate cysteine medium (ACCM-2) has been developed which mimics the intracellular replicative niche of C. burnetii and allows axenic growth of the bacteria. To determine if C. burnetii cultured in ACCM-2 retains immunogenicity, we compared the protective efficacies of formalin-inactivated C. burnetii Nine Mile phase I (PIV) and phase II (PIIV) vaccines derived from axenic culture 7, 14, and 28 days postvaccination. PIV conferred significant protection against virulent C. burnetii as early as 7 days postvaccination, which suggests that ACCM-2-derived PIV retains immunogenicity and protectivity. We analyzed the cellular immune response in spleens from PIV- and PIIV-vaccinated mice by flow cytometry at 7 and 14 days postvaccination and found significantly more granulocytes in PIV-vaccinated mice than in PIIV-vaccinated mice. Interestingly, we found these infiltrating granulocytes to be SSChigh CD11b+ CD125+ Siglec-F+ (where SSChigh indicates a high side scatter phenotype) eosinophils. There was no change in the number of eosinophils in PIV-vaccinated CD4-deficient mice compared to the level in controls, which suggests that eosinophil accumulation is CD4+ T cell dependent. To evaluate the importance of eosinophils in PIV-mediated protection, we vaccinated and challenged eosinophil-deficient ΔdblGATA mice. ΔdblGATA mice had significantly worse disease than their wild-type counterparts when challenged 7 days postvaccination, while no significant difference was seen at 28 days postvaccination. Nevertheless, ΔdblGATA mice had elevated serum IgM with decreased IgG1 and IgG2a whether mice were challenged at 7 or 28 days postvaccination. These results suggest that eosinophils may play a role in early vaccine protection against C. burnetii and contribute to antibody isotype switching.


2012 ◽  
Vol 80 (6) ◽  
pp. 1980-1986 ◽  
Author(s):  
Laura J. MacDonald ◽  
Richard C. Kurten ◽  
Daniel E. Voth

ABSTRACTCoxiella burnetiiis the bacterial agent of human Q fever, an acute, flu-like illness that can present as chronic endocarditis in immunocompromised individuals. Following aerosol-mediated transmission,C. burnetiireplicates in alveolar macrophages in a unique phagolysosome-like parasitophorous vacuole (PV) required for survival. The mechanisms ofC. burnetiiintracellular survival are poorly defined and a recent Q fever outbreak in the Netherlands emphasizes the need for better understanding this unique host-pathogen interaction. We recently demonstrated that inhibition of host cyclic AMP-dependent protein kinase (PKA) activity negatively impacts PV formation. In the current study, we confirmed PKA involvement in PV biogenesis and probed the role of PKA signaling duringC. burnetiiinfection of macrophages. Using PKA-specific inhibitors, we found the kinase was needed for biogenesis of prototypical PV andC. burnetiireplication. PKA and downstream targets were differentially phosphorylated throughout infection, suggesting prolonged regulation of the pathway. Importantly, the pathogen actively triggered PKA activation, which was also required for PV formation by virulentC. burnetiiisolates during infection of primary human alveolar macrophages. A subset of PKA-specific substrates were differentially phosphorylated duringC. burnetiiinfection, suggesting the pathogen uses PKA signaling to control distinct host cell responses. Collectively, the current results suggest a versatile role for PKA inC. burnetiiinfection and indicate virulent organisms usurp host kinase cascades for efficient intracellular growth.


2015 ◽  
Vol 83 (3) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joseph G. Graham ◽  
Caylin G. Winchell ◽  
Uma M. Sharma ◽  
Daniel E. Voth

Coxiella burnetiicauses human Q fever, a zoonotic disease that presents with acute flu-like symptoms and can result in chronic life-threatening endocarditis. In human alveolar macrophages,C. burnetiiuses a Dot/Icm type IV secretion system (T4SS) to generate a phagolysosome-like parasitophorous vacuole (PV) in which to replicate. The T4SS translocates effector proteins, or substrates, into the host cytosol, where they mediate critical cellular events, including interaction with autophagosomes, PV formation, and prevention of apoptosis. Over 100C. burnetiiDot/Icm substrates have been identified, but the function of most remains undefined. Here, we identified a novel Dot/Icm substrate-encoding open reading frame (CbuD1884) present in allC. burnetiiisolates except the Nine Mile reference isolate, where the gene is disrupted by a frameshift mutation, resulting in a pseudogene. The CbuD1884 protein contains two transmembrane helices (TMHs) and a coiled-coil domain predicted to mediate protein-protein interactions. The C-terminal region of the protein contains a predicted Dot/Icm translocation signal and was secreted by the T4SS, while the N-terminal portion of the protein was not secreted. When ectopically expressed in eukaryotic cells, the TMH-containing N-terminal region of the CbuD1884 protein trafficked to the endoplasmic reticulum (ER), with the C terminus dispersed nonspecifically in the host cytoplasm. This new Dot/Icm substrate is now termed ElpA (ER-localizingproteinA). Full-length ElpA triggered substantial disruption of ER structure and host cell secretory transport. These results suggest that ElpA is a pathotype-specific T4SS effector that influences ER function duringC. burnetiiinfection.


2016 ◽  
Vol 60 (4) ◽  
pp. 2435-2442 ◽  
Author(s):  
Tecla Ciociola ◽  
Thelma A. Pertinhez ◽  
Laura Giovati ◽  
Martina Sperindè ◽  
Walter Magliani ◽  
...  

ABSTRACTSynthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro. The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.


Sign in / Sign up

Export Citation Format

Share Document