scholarly journals Uncoupling of the apyrimidinic/apurinic endonucleolytic and 3′→5′ exonucleolytic activities of the Nfo protein of Mycoplasma pneumoniae through mutation of specific amino acid residues

Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1087-1100 ◽  
Author(s):  
Silvia Estevão ◽  
Pieternella E. van der Spek ◽  
Annemarie M. C. van Rossum ◽  
Cornelis Vink

The DNA recombination and repair machineries of Mycoplasma pneumoniae and Mycoplasma genitalium were predicted to consist of a set of ~11 proteins. The function of one of these proteins was inferred from its homology with proteins belonging to the Endo IV enzyme family. The members of this family function in the repair of apyrimidinic/apurinic (AP) sites in DNA. As such activity may be crucial in the mycoplasmal life cycle, we set out to study the Endo IV-like proteins encoded by M. pneumoniae and M. genitalium. Both proteins, termed Nfo Mpn and Nfo Mge , respectively, were assessed for their ability to interact with damaged and undamaged DNA. In the absence of divalent cations, both proteins exhibited specific cleavage of AP sites. Surprisingly, the proteins also recognized and cleaved cholesteryl-bound deoxyribose moieties in DNA, showing that these Nfo proteins may also function in repair of large DNA adducts. In the presence of Mg2+, Nfo Mpn and Nfo Mge also showed 3′→5′ exonucleolytic activity. By introduction of 13 single point mutations at highly conserved positions within Nfo Mpn , two major types of mutants could be distinguished: (i) mutants that showed no, or limited, AP cleavage activity in the presence of EDTA, but displayed significant levels of AP cleavage activity in the presence of Mg2+; these mutants displayed no, or very low, exonucleolytic activity; and (ii) mutants that only demonstrated marginal levels of AP site cleavage activity in the presence of Mg2+ and did not show exonucleolytic activity. Together, these results indicated that the AP endonucleolytic activity of the Nfo Mpn protein can be uncoupled from its 3′→5′ exonucleolytic activity.

2009 ◽  
Vol 77 (11) ◽  
pp. 4905-4911 ◽  
Author(s):  
Marcel Sluijter ◽  
Emiel B. M. Spuesens ◽  
Nico G. Hartwig ◽  
Annemarie M. C. van Rossum ◽  
Cornelis Vink

ABSTRACT The P1, P40, and P90 proteins of Mycoplasma pneumoniae and the MgPa and P110 proteins of Mycoplasma genitalium are immunogenic adhesion proteins that display sequence variation. Consequently, these proteins are thought to play eminent roles in immune evasive strategies. For each of the five proteins, a similar underlying molecular mechanism for sequence variation was hypothesized, i.e., modification of the DNA sequences of their respective genes. This modification is thought to result from homologous recombination of parts of these genes with repeat elements (RepMp and MgPar elements in M. pneumoniae and M. genitalium, respectively) that are dispersed throughout the bacterial genome. Proteins that are potentially involved in homologous DNA recombination have been suggested to be implicated in recombination between these repeat elements and thereby in antigenic variation. To investigate this notion, we set out to study the function of the RecA homologs that are encoded by the M. pneumoniae MPN490 and M. genitalium MG339 genes. Both proteins, which are 79% identical on the amino acid level, were found to promote recombination between homologous DNA substrates in an ATP-dependent fashion. The recombinational activities of both proteins were Mg2+ and pH dependent and were strongly supported by the presence of single-stranded DNA binding protein, either from M. pneumoniae or from Escherichia coli. We conclude that the MPN490- and MG339-encoded proteins are RecA homologs that have the capacity to recombine homologous DNA substrates. Thus, they may play a central role in recombination between repetitive elements in both M. pneumoniae and M. genitalium.


2002 ◽  
Vol 120 (2) ◽  
pp. 119-131 ◽  
Author(s):  
Angela N. Eickhorst ◽  
Amy Berson ◽  
Debra Cockayne ◽  
Henry A. Lester ◽  
Baljit S. Khakh

ATP-gated P2X channels are the simplest of the three families of transmitter-gated ion channels. Some P2X channels display a time- and activation-dependent change in permeability as they undergo the transition from the relatively Na+-selective I1 state to the I2 state, which is also permeable to organic cations. We report that the previously reported permeability change of rat P2X2 (rP2X2) channels does not occur at mouse P2X2 (mP2X2) channels expressed in oocytes. Domain swaps, species chimeras, and point mutations were employed to determine that two specific amino acid residues in the cytosolic tail domain govern this difference in behavior between the two orthologous channels. The change in pore diameter was characterized using reversal potential measurements and excluded field theory for several organic ions; both rP2X2 and mP2X2 channels have a pore diameter of ∼11 Å in the I1 state, but the transition to the I2 state increases the rP2X2 diameter by at least 3 Å. The I1 to I2 transition occurs with a rate constant of ∼0.5 s−1. The data focus attention on specific residues of P2X2 channel cytoplasmic domains as determinants of permeation in a state-specific manner.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ke Yang ◽  
Ling-Qiao Huang ◽  
Chao Ning ◽  
Chen-Zhu Wang

Male moths possess highly sensitive and selective olfactory systems that detect sex pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process. The PR HassOr14b is found to be tuned to (Z)−9-hexadecenal, the major sex-pheromone component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in the closely related species Helicoverpa armigera, is tuned to another chemical (Z)−9-tetradecenal, we study the amino acid residues that determine their ligand selectivity. Two amino acids located in the transmembrane domains F232I and T355I together determine the functional difference between the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which provides new insights into the evolution of closely related moth species.


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia McGillick ◽  
Jessica R. Ames ◽  
Tamiko Murphy ◽  
Christina R. Bourne

AbstractType II toxin-antitoxin systems contain a toxin protein, which mediates diverse interactions within the bacterial cell when it is not bound by its cognate antitoxin protein. These toxins provide a rich source of evolutionarily-conserved tertiary folds that mediate diverse catalytic reactions. These properties make toxins of interest in biotechnology applications, and studies of the catalytic mechanisms continue to provide surprises. In the current work, our studies on a YoeB family toxin from Agrobacterium tumefaciens have revealed a conserved ribosome-independent non-specific nuclease activity. We have quantified the RNA and DNA cleavage activity, revealing they have essentially equivalent dose-dependence while differing in requirements for divalent cations and pH sensitivity. The DNA cleavage activity is as a nickase for any topology of double-stranded DNA, as well as cleaving single-stranded DNA. AtYoeB is able to bind to double-stranded DNA with mid-micromolar affinity. Comparison of the ribosome-dependent and -independent reactions demonstrates an approximate tenfold efficiency imparted by the ribosome. This demonstrates YoeB toxins can act as non-specific nucleases, cleaving both RNA and DNA, in the absence of being bound within the ribosome.


2020 ◽  
Vol 48 (W1) ◽  
pp. W147-W153 ◽  
Author(s):  
Douglas E V Pires ◽  
Carlos H M Rodrigues ◽  
David B Ascher

Abstract Significant efforts have been invested into understanding and predicting the molecular consequences of mutations in protein coding regions, however nearly all approaches have been developed using globular, soluble proteins. These methods have been shown to poorly translate to studying the effects of mutations in membrane proteins. To fill this gap, here we report, mCSM-membrane, a user-friendly web server that can be used to analyse the impacts of mutations on membrane protein stability and the likelihood of them being disease associated. mCSM-membrane derives from our well-established mutation modelling approach that uses graph-based signatures to model protein geometry and physicochemical properties for supervised learning. Our stability predictor achieved correlations of up to 0.72 and 0.67 (on cross validation and blind tests, respectively), while our pathogenicity predictor achieved a Matthew's Correlation Coefficient (MCC) of up to 0.77 and 0.73, outperforming previously described methods in both predicting changes in stability and in identifying pathogenic variants. mCSM-membrane will be an invaluable and dedicated resource for investigating the effects of single-point mutations on membrane proteins through a freely available, user friendly web server at http://biosig.unimelb.edu.au/mcsm_membrane.


2003 ◽  
Vol 185 (19) ◽  
pp. 5747-5754 ◽  
Author(s):  
Annette Sauter ◽  
S. Peter Howard ◽  
Volkmar Braun

ABSTRACT TonB, in complex with ExbB and ExbD, is required for the energy-dependent transport of ferric siderophores across the outer membrane of Escherichia coli, the killing of cells by group B colicins, and infection by phages T1 and φ80. To gain insights into the protein complex, TonB dimerization was studied by constructing hybrid proteins from complete TonB (containing amino acids 1 to 239) [TonB(1-239)] and the cytoplasmic fragment of ToxR which, when dimerized, activates the transcription of the cholera toxin gene ctx. ToxR(1-182)-TonB(1-239) activated the transcription of lacZ under the control of the ctx promoter (P ctx ::lacZ). Replacement of the TonB transmembrane region by the ToxR transmembrane region resulted in the hybrid proteins ToxR(1-210)-TonB(33-239) and ToxR(1-210)-TonB(164-239), of which only the latter activated P ctx ::lacZ transcription. Dimer formation was reduced but not abolished in a mutant lacking ExbB and ExbD, suggesting that these complex components may influence dimerization but are not strictly required and that the N-terminal cytoplasmic membrane anchor and the C-terminal region are important for dimer formation. The periplasmic TonB fragment, TonB(33-239), inhibits ferrichrome and ferric citrate transport and induction of the ferric citrate transport system. This competition provided a means to positively screen for TonB(33-239) mutants which displayed no inhibition. Single point mutations of inactive fragments selected in this manner were introduced into complete TonB, and the phenotypes of the TonB mutant strains were determined. The mutations located in the C-terminal half of TonB, three of which (Y163C, V188E, and R204C) were obtained separately by site-directed mutagenesis, as was the isolated F230V mutation, were studied in more detail. They displayed different activity levels for various TonB-dependent functions, suggesting function-related specificities which reflect differences in the interactions of TonB with various transporters and receptors.


2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


Sign in / Sign up

Export Citation Format

Share Document