The LicT protein acts as both a positive and a negative regulator of loci within the bgl regulon of Streptococcus mutans

Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1333-1340 ◽  
Author(s):  
Christopher K. Cote ◽  
Allen L. Honeyman

An open reading frame (ORF) that would encode a putative antiterminator protein (LicT) of the BglG family was identified in the genomic DNA sequence of Streptococcus mutans. A DNA sequence that would encode a potential ribonucleic antiterminator (RAT) site in the mRNA at which the putative antitermination protein LicT would bind was located immediately downstream from this ORF. These putative antitermination components are upstream of a glucose-independent β-glucoside-utilization system that is responsible for aesculin utilization by S. mutans NG8 in the presence of glucose. It was hypothesized that these putative regulatory components were an important mechanism that was involved with the controlled expression of the S. mutans bglP locus. A strain of S. mutans containing a licT : : Ω-Kan2 insertional mutation was created. This strain could not hydrolyse aesculin in the presence of glucose. The transcriptional activity associated with other genes from the bgl regulon was determined in the licT : : Ω-Kan2 genetic background using lacZ transcriptional fusions and β-galactosidase assays to determine the effect of LicT on these loci. The LicT protein had no significant effect on the expression of the bglC promoter, a regulator of the bglA locus. However, it is essential for the optimal expression of bglP. These data correlate with the phenotype observed on aesculin plates for the S. mutans wild-type strain NG8 and the licT : : Ω-Kan2 strain. Thus, the glucose-independent β-glucoside-specific phosphotransferase system (PTS) regulon in S. mutans relies on LicT for BglP expression and, in turn, aesculin transport in the presence of glucose. Interestingly, LicT also seems to negatively regulate the expression of the bglA promoter region. In addition, the presence of the S. mutans licT gene has been shown to be able to activate a cryptic β-glucoside-specific operon found in Escherichia coli.

2004 ◽  
Vol 70 (10) ◽  
pp. 6047-6052 ◽  
Author(s):  
Jacqueline Abranches ◽  
Yi-Ywan M. Chen ◽  
Robert A. Burne

ABSTRACT The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.


2003 ◽  
Vol 69 (8) ◽  
pp. 4760-4769 ◽  
Author(s):  
Jacqueline Abranches ◽  
Yi-Ywan M. Chen ◽  
Robert A. Burne

ABSTRACT The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIABMan (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIABMan is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIABMan transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIABMan controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIABMan-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIABMan is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIABMan-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIABMan has a pleiotropic effect on gene expression.


1987 ◽  
Vol 33 (2) ◽  
pp. 118-122 ◽  
Author(s):  
Christian Vadeboncoeur ◽  
Lucie Gauthier

A double-spontaneous mutant resistant to the growth inhibitory effect of α-methylglucoside and 2-deoxyglucose was isolated from Streptococcus salivarius. This mutant strain, called αS3L11, did not grow on mannose and grew poorly on 5 mM fructose and 5 mM glucose. Isolated membranes of strain αS3L11 were unable to catalyse the phosphoenolpyruvate-dependent phosphorylation of mannose in the presence of purified enzyme I and HPr. Addition of dialysed membrane-free cellular extract of the wild-type strain to the reaction medium restored the activity. The factor that restored the phosphoenolpyruvate–mannose phosphotransferase activity to membranes of strain αS3L11 was called IIIman. This factor was partially purified from the wild-type strain by DEAE-cellulose chromatography, DEAE-TSK chromatography, and molecular seiving on a column of Ultrogel AcA 34. This partially purified preparation also enhanced the phosphoenolpyruvate-dependent phosphorylation of glucose, fructose, and 2-deoxyglucose in strain αS3L11.


2002 ◽  
Vol 68 (8) ◽  
pp. 4107-4110 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Tatsuya Maruo ◽  
Yoko Shirai ◽  
Junichi Kato ◽  
Tsukasa Ikeda ◽  
...  

ABSTRACT The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.


2001 ◽  
Vol 183 (3) ◽  
pp. 830-834 ◽  
Author(s):  
Kevin V. Shianna ◽  
W. David Dotson ◽  
Shirley Tove ◽  
Leo W. Parks

ABSTRACT Saccharomyces cerevisiae normally will not take up sterols from the environment under aerobic conditions. A specific mutant, upc2-1, of the predicted transcriptional activator UPC2 (YDR213w) has been recognized as a strain that allows a high level of aerobic sterol uptake. Another predicted transcriptional activator, the YLR228c gene product, is highly homologous to Upc2p. In fact, at the carboxy terminus 130 of the last 139 amino acids are similar between the two proteins. Since these proteins are very similar, the effect of mutations in the YLR228c open reading frame (ORF) was compared with like alterations in UPC2. First, the YLR228c ORF was insertionally inactivated and crossed with various UPC2constructs. Deletion of YLR228c and UPC2 in combination resulted in nonviability, suggesting that the two proteins have some essential overlapping function. The upc2-1point mutation responsible for aerobic sterol uptake was duplicated in the homologous carboxy region of the YLR228c ORF using site-directed mutagenesis. This mutation on a high-copy vector resulted in an increase in sterol uptake compared to an isogenic wild-type strain. The combination of both point mutations resulted in the greatest level of aerobic sterol uptake. When the YLR228c point mutation was expressed from a low-copy vector there was little if any effect on sterol uptake. Gas chromatographic analysis of the nonsaponifiable fractions of the various strains showed that the major sterol for all YLR228c andUPC2 combinations was ergosterol, the consensus yeast sterol.


2001 ◽  
Vol 183 (22) ◽  
pp. 6654-6661 ◽  
Author(s):  
Zheng-Chao Tu ◽  
Kevin C. Ray ◽  
Stuart A. Thompson ◽  
Martin J. Blaser

ABSTRACT Campylobacter fetus cells possess multiple promoterless sap homologs, each capable of expressing a surface layer protein (SLP) by utilizing a unique promoter present on a 6.2-kb invertible element. Each sap homolog includes a 626-bp 5′ conserved region (FCR) with 74 bp upstream and 552 bp within the open reading frame. After DNA inversion, the splice is seamless because the FCRs are identical. In mutant strain 23D:ACA2K101, in whichsapA and sapA2 flanking the invertible element in opposite orientations were disrupted by promoterless chloramphenicol resistance (Cmr) and kanamycin resistance (Kmr) cassettes, respectively, the frequency of DNA inversion is 100-fold lower than that of wild-type strain 23D. To define the roles of a 15-bp inverted repeat (IR) and a Chi-like site (CLS) in the FCR, we mutagenized each upstream of sapA2in 23D:ACA2K101 by introducing NotI andKpnI sites to create strains 23D:ACA2K101N and 23D:ACA2K101K, respectively. Alternatively selecting colonies for Cmr or Kmr showed that mutagenizing the IR or CLS had no apparent effect on the frequency of the DNA inversion. However, mapping the unique NotI or KpnI site in relation to the Cmr or Kmr cassette in the cells that changed phenotype showed that splices occurred both upstream and downstream of the mutated sites. PCR and sequence analyses also showed that the splice could occur in the 425-bp portion of the FCR downstream of the cassettes. In total, these data indicate that C.fetus can use multiple sites within the FCR for itssap-related DNA inversion.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1629-1639 ◽  
Author(s):  
Renata Novakova ◽  
Alena Rehakova ◽  
Peter Kutas ◽  
Lubomira Feckova ◽  
Jan Kormanec

Two regulators, Aur1P and Aur1R, have been previously found to control expression of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239 in a cascade mechanism. Here, we describe the characterization of two additional regulatory genes, aur1PR2 and aur1PR3, encoding homologues of the SARP family of transcriptional activators that were identified in the upstream part of the aur1 cluster. Expression of both genes is directed by a single promoter, aur1PR2p and aur1Pr3p, respectively, induced in late exponential phase. Disruption of aur1PR2 in S. aureofaciens CCM 3239 had no effect on auricin production. However, the disruption of aur1PR3 dramatically reduced auricin compared with its parental wild-type strain. Transcription from the aur1Ap promoter, directing expression of the first biosynthetic gene in the auricin gene cluster, was similarly decreased in the S. aureofaciens CCM 3239 aur1PR3 mutant. Transcription from the aur1PR3p promoter increased in the S. aureofaciens CCM 3239 aur1R mutant strain, and the TetR family negative regulator Aur1R was shown to specifically bind the aur1PR3p promoter. These results indicate a complex regulation of the auricin cluster by the additional SARP family transcriptional activator Aur1PR3.


2004 ◽  
Vol 186 (21) ◽  
pp. 7302-7311 ◽  
Author(s):  
Mark T. Anderson ◽  
Sandra K. Armstrong

ABSTRACT Utilization of the enterobactin siderophore by the respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica is dependent on the BfeA outer membrane receptor. This study determined that production of BfeA was increased significantly in iron-starved bacteria upon supplementation of cultures with enterobactin. A 1.01-kb open reading frame, designated bfeR, encoding a predicted positive transcriptional regulator of the AraC family was identified upstream and divergently oriented from bfeA. In iron-depleted cultures containing enterobactin, a Bordetella bfeR mutant exhibited markedly decreased BfeA receptor production compared to that of the wild-type strain. Additionally, B. pertussis and B. bronchiseptica bfeR mutants exhibited impaired growth with ferric enterobactin as the sole source of iron, demonstrating that effective enterobactin utilization is bfeR dependent. Transcriptional analysis using bfeA-lacZ reporter fusions in wild-type strains demonstrated that bfeA transcription was stimulated in iron-depleted conditions in the presence of enterobactin, compared to modest expression levels in cultures lacking enterobactin. In contrast, bfeA transcription in B. pertussis and B. bronchiseptica bfeR mutants was completely unresponsive to the enterobactin inducer. bfeA transcriptional analyses of a bfeA mutant demonstrated that induction by enterobactin did not require BfeA receptor-mediated uptake of the siderophore. These studies establish that bfeR encodes an enterobactin-dependent positive regulator of bfeA transcription in these Bordetella species.


2005 ◽  
Vol 73 (7) ◽  
pp. 3971-3982 ◽  
Author(s):  
Elaine Vanterpool ◽  
Francis Roy ◽  
Hansel M. Fletcher

ABSTRACT Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis.


Sign in / Sign up

Export Citation Format

Share Document