scholarly journals Bacteriophage SP01 Gene Product 56 (gp56) Inhibits Bacillus subtilis Cell Division by Interacting with DivIC/FtsL to Prevent Pbp2B/FtsW Recruitment

2020 ◽  
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gp56, encoded by the lytic bacteriophage SP01, as responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here we show that expression of the predicted 9.3-kDa gene product 56 (gp56) of SP01 inhibits latter stages of B. subtilis cell division without altering FtsZ ring assembly. GFP-tagged gp56 localizes to the membrane at the site of division. While its localization permits recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analysis suggest that gp56 localization and activity depends on its interaction with mid-recruited proteins DivIC and/or FtsL. Together these data support a model where gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCEResearch over the past decades has uncovered bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. Phage factors that cause cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanism of several identified phage factors that inhibit cytokinesis remain unexplored, including gp56 of bacteriophage SP01 of Bacillus subtilis. Here, we show that unlike related published examples of phage inhibition of cyotkinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and block recruitment of proteins needed for the septal cell wall synthesis.

2020 ◽  
Vol 203 (2) ◽  
pp. e00463-20
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.


2008 ◽  
Vol 190 (9) ◽  
pp. 3283-3292 ◽  
Author(s):  
Michal Letek ◽  
Efrén Ordóñez ◽  
José Vaquera ◽  
William Margolin ◽  
Klas Flärdh ◽  
...  

ABSTRACT The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVACg) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVACg-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVACg localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.


2021 ◽  
Author(s):  
Ine Storaker Myrbråten ◽  
Gro A. Stamsås ◽  
Helena Chan ◽  
Danae Morales Angeles ◽  
Tiril Mathiesen Knutsen ◽  
...  

Cell division and cell wall synthesis in staphylococci need to be precisely coordinated and controlled to allow the cell to multiply while maintaining their nearly spherical shape. The mechanisms ensuring correct placement of the division plane and synthesis of new cell wall have been studied intensively, however, hitherto unknown factors and proteins are likely to play key roles in this complex interplay. Starting from a subcellular localization- and gene knockdown screen of essential genes with unknown functions in Staphylococcus aureus, we identified a protein with major influence on cell morphology in S. aureus. The protein, here named SmdA (for staphylococcal morphology determinant A), is a membrane-protein with septum-enriched localization. By smdA silencing and overexpression, we have used different microscopy techniques to show that SmdA is critical for cell division, including septum formation and cell splitting. We also identified conserved residues in SmdA that are critical for functionality. Pulldown- and bacterial two-hybrid interaction experiments showed that SmdA interacts with several known cell division- and cell wall synthesis proteins, including penicillin binding proteins (PBPs) and EzrA. Notably, SmdA also affects susceptibility to cell wall targeting antibiotics, particularly in methicillin-resistant S. aureus (MRSA). Together, our results show that S. aureus is dependent on balanced amounts of membrane-attached SmdA in order to carry out proper cell division.


Microbiology ◽  
2006 ◽  
Vol 152 (4) ◽  
pp. 1129-1141 ◽  
Author(s):  
Yoshikazu Kawai ◽  
Naotake Ogasawara

Previous work has shown that the Bacillus subtilis EzrA protein directly inhibits FtsZ ring assembly, which is required for normal cell division, and that loss of EzrA results in hyperstabilization of the FtsZ polymer in vivo. Here, it was found that in ezrA-disrupted cells, artificial expression of YneA, which suppresses cell division during the SOS response, and disruption of noc (yyaA), which acts as an effector of nucleoid occlusion, resulted in accumulation of multiple non-constricting FtsZ rings, inhibition of cell division, and synthetic lethality. Overexpression of the essential cell division protein FtsL suppressed the effect of ezrA disruption. FtsL overexpression recovered the delayed FtsZ ring constriction seen in ezrA-disrupted wild-type cells. Conversely, the absence of EzrA caused lethality in cells producing a lower amount of FtsL than wild-type cells. It has previously been reported that FtsL is recruited to the division site during the later stages of cell division, although its exact role is currently unknown. The results of this study suggest that FtsL and EzrA synergistically regulate the FtsZ ring constriction in B. subtilis. Interestingly, FtsL overexpression also suppressed the cell division inhibition due to YneA expression or Noc inactivation in ezrA-disrupted cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kevin D. Whitley ◽  
Calum Jukes ◽  
Nicholas Tregidgo ◽  
Eleni Karinou ◽  
Pedro Almada ◽  
...  

AbstractDespite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine.


Author(s):  
Kevin D. Whitley ◽  
Calum Jukes ◽  
Nicholas Tregidgo ◽  
Eleni Karinou ◽  
Pedro Almada ◽  
...  

ABSTRACTDespite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments1,2. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear2–5. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a novel combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine.


Author(s):  
Nadine Silber ◽  
Christian Mayer ◽  
Cruz L Matos de Opitz ◽  
Peter Sass

AbstractADEP antibiotics induce the degradation of the cell division protein FtsZ, thereby primarily depleting the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. We here studied the effect of ADEP on FtsZ ring formation. Our data reveal the disintegration of early FtsZ rings during ADEP treatment, while progressed FtsZ rings finalize cytokinesis, thus indicating different roles for FtsZ treadmilling during distinct stages of divisome assembly and constriction.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Karin Schubert ◽  
Boris Sieger ◽  
Fabian Meyer ◽  
Giacomo Giacomelli ◽  
Kati Böhm ◽  
...  

ABSTRACT Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation. IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.


2019 ◽  
Author(s):  
Heng Zhao ◽  
Ankita J. Sachla ◽  
John D. Helmann

AbstractIn Bacillus subtilis, the extracytoplasmic function σ factor σM regulates cell wall synthesis and is critical for intrinsic resistance to cell wall targeting antibiotics. The anti-σ factors YhdL and YhdK form a complex that restricts the basal activity of σM, and the absence of YhdL leads to runaway expression of the σM regulon and cell death. Here, we report that this lethality can be suppressed by gain-of-function mutations in spoIIIJ, which encodes the major YidC membrane protein insertase in B. subtilis. B. subtilis PY79 SpoIIIJ contains a single amino acid substitution in the substrate-binding channel (Q140K), and this allele suppresses the lethality of high SigM. Analysis of a library of YidC variants reveals that increased charge (+2 or +3) in the substrate-binding channel can compensate for high expression of the σM regulon. Derepression of the σM regulon induces secretion stress, oxidative stress and DNA damage responses, all of which can be alleviated by the YidCQ140K substitution. We further show that the fitness defect caused by high σM activity is exacerbated in the absence of SecDF protein translocase or σM-dependent induction of the Spx oxidative stress regulon. Conversely, cell growth is improved by mutation of specific σM-dependent promoters controlling operons encoding integral membrane proteins. Collectively, these results reveal how the σM regulon has evolved to up-regulate membrane-localized complexes involved in cell wall synthesis, and to simultaneously counter the resulting stresses imposed by regulon induction.Author SummaryBacteria frequently produce antibiotics that inhibit the growth of competitors, and many naturally occurring antibiotics target cell wall synthesis. In Bacillus subtilis, the alternative σ factor σM is induced by cell wall antibiotics, and upregulates genes for peptidoglycan and cell envelope synthesis. However, dysregulation of the σM regulon, resulting from loss of the YhdL anti-σM protein, is lethal. We here identify charge variants of the SpoIIIJ(YidC) membrane protein insertase that suppress the lethal effects of high σM activity. Further analyses reveal that induction of the σM regulon leads to high level expression of membrane proteins that trigger envelope stress, and this stress is countered by specific genes in the σM regulon.


2021 ◽  
Author(s):  
Zhixin Lyu ◽  
Atsushi Yahashiri ◽  
Xinxing Yang ◽  
Joshua W McCausland ◽  
Gabriela M Kaus ◽  
...  

The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ~ 9 nm s-1, similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ~ 30 nm s-1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ's treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.


Sign in / Sign up

Export Citation Format

Share Document