scholarly journals Permissive and restricted virus infection of murine embryonic stem cells

2012 ◽  
Vol 93 (10) ◽  
pp. 2118-2130 ◽  
Author(s):  
Rachael Wash ◽  
Sabrina Calabressi ◽  
Stephanie Franz ◽  
Samantha J. Griffiths ◽  
David Goulding ◽  
...  

Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA ‘off-target’ effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host–pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host–virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host–virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence.

2019 ◽  
Vol 12 (4) ◽  
pp. 147 ◽  
Author(s):  
Sonja C. J. H. Chua ◽  
Hui Qing Tan ◽  
David Engelberg ◽  
Lina H. K. Lim

Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host–pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus–host interactions and viral protein function.


2006 ◽  
Vol 290 (3) ◽  
pp. F657-F665 ◽  
Author(s):  
Scott Martinka ◽  
Leslie A. Bruggeman

Human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) is caused, in part, by direct infection of kidney epithelial cells by HIV-1. In the spectrum of pathogenic host-virus interactions, abnormal activation or suppression of host transcription factors is common. NF-κB is a necessary host transcription factor for HIV-1 gene expression, and it has been shown that NF-κB activity is dysregulated in many naturally infected cell types. We show here that renal glomerular epithelial cells (podocytes) expressing the HIV-1 genome, similar to infected immune cells, also have a dysregulated and persistent activation of NF-κB. Although podocytes produce p50, p52, RelA, RelB, and c-Rel, electrophoretic mobility shift assays and immunocytochemistry showed a predominant nuclear accumulation of p50/RelA-containing NF-κB dimers in HIV-1-expressing podocytes compared with normal. In addition, the expression level of a transfected NF-κB reporter plasmid was significantly higher in HIVAN podocytes. The mechanism of NF-κB activation involved increased phosphorylation of IκBα, resulting in an enhanced turnover of the IκBα protein. There was no evidence for regulation by IκBβ or the alternate pathway of NF-κB activation. Altered activation of this key host transcription factor likely plays a role in the well-described cellular phenotypic changes observed in HIVAN, such as proliferation. Studies with inhibitors of proliferation and NF-κB suggest that NF-κB activation may contribute to the proliferative mechanism in HIVAN. In addition, because NF-κB regulates many aspects of inflammation, this dysregulation may also contribute to disease severity and progression through regulation of proinflammatory processes in the kidney microenvironment.


2008 ◽  
Vol 197 (11) ◽  
pp. 1558-1566 ◽  
Author(s):  
M. Danta ◽  
N. Semmo ◽  
P. Fabris ◽  
D. Brown ◽  
O. G. Pybus ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 436 ◽  
Author(s):  
Kavitha Ganesan Nathan ◽  
Sunil K. Lal

The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host–virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host–virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus–virus or virus–host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.


2015 ◽  
Vol 36 ◽  
pp. 61-66 ◽  
Author(s):  
Luca G Guidotti ◽  
Masanori Isogawa ◽  
Francis V Chisari

2018 ◽  
Vol 92 (8) ◽  
pp. e02211-17 ◽  
Author(s):  
Julienne M. Jagdeo ◽  
Antoine Dufour ◽  
Theo Klein ◽  
Nestor Solis ◽  
Oded Kleifeld ◽  
...  

ABSTRACTEnteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitativein vitroproteomics-based approach, termedterminalamineisotopiclabeling ofsubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitroincluding three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpropromotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cprosubstratesin vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCEEnteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.


2005 ◽  
Vol 873 ◽  
Author(s):  
Michael H. Tollon ◽  
Takashi Hamazaki ◽  
Bradley J. Willenberg ◽  
Christopher Batich ◽  
Naohiro Terada

AbstractIn the past decade, tissue engineering has become a great interest in materials science research. Embryonic stem (ES) cell transplantation has become one of the most researched therapies for restoring tissue and organ function. Many studies have investigated the use of porous biodegradable scaffolds to promote cell adhesion, growth, proliferation, differentiation, and to help steer the course of tissue development. Research has shown that extracellular matrices and the basement membranes affect various cell types and cellular behaviors. However, the effects of these materials on ES cell behavior are currently understudied and poorly understood.In this study, the synthetic biodegradable polymer polycaprolactone (PCL) was chosen to create an interconnected, fibrous foam structure. A phase separated scaffold method was developed and the product made was coated with various extracellular materials. When the phase separated PCL scaffolds were coated with Matrigel and gelatin solutions, murine ES (mES) cells attached, spread, and differentiated within the scaffolds. There was little growth on the uncoated material. Coating effects on mES cells were analyzed using flow cytometry, reverse-transcriptase polymerase chain reaction and scanning electron microscopy. It was found that coating the scaffold with different extracellular matrices affects mES cell morphology and differentiation. Matrigel coating causes expression of neural proteins and gelatin produces a hepatocyte-like cell.


2016 ◽  
Author(s):  
Shapira Lev ◽  
Ralph Maya ◽  
Tomer Enosh ◽  
Cohen Shai ◽  
Kobiler Oren

AbstractAlthough many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1) fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s). Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA), Suberohydroxamic Acid (SBX), Valporic Acid (VPA) and Suberoylanilide Hydoxamic Acid (SAHA). We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the infection. Different cell types (HFF, Vero and U2OS), which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX), which may down regulate the number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in differences in the number of genomes that initiate expression.


Sign in / Sign up

Export Citation Format

Share Document