scholarly journals Genetic characterization of novel putative rhabdovirus and dsRNA virus from Japanese persimmon

2013 ◽  
Vol 94 (8) ◽  
pp. 1917-1921 ◽  
Author(s):  
Takao Ito ◽  
Koichi Suzaki ◽  
Masaaki Nakano

Deep-sequencing analysis of nucleic acids from leaf tissue of Japanese persimmon trees exhibiting fruit apex disorder in some fruits detected two molecules that were graft transmitted to healthy seedlings. One of the complete genomes consisted of 13 467 nt and encoded six genes similar to those of plant rhabdoviruses. The virus formed a distinct cluster in the genus Cytorhabdovirus with lettuce necrotic yellows virus, lettuce yellow mottle virus and strawberry crinkle virus in a phylogenetic tree based on the L protein (RNA-dependent RNA polymerase, RdRp). The other consisted of 7475 nt and shared a genome organization similar to those of some insect and fungal viruses having dsRNA genomes. In a phylogenetic tree using the RdRp sequence of several unassigned dsRNA viruses, the virus formed a possible new genus cluster with two insect viruses, Circulifer tenellus virus 1 and Spissistilus festinus virus 1, and one plant virus, cucurbit yellows-associated virus.

2020 ◽  
pp. 37-40

Genetic variety examination has demonstrated fundamental to the understanding of the epidemiological and developmental history of Papillomavirus (HPV), for the development of accurate diagnostic tests and for efficient vaccine design. The HPV nucleotide diversity has been investigated widely among high-risk HPV types. To make the nucleotide sequence of HPV and do the virus database in Thi-Qar province, and compare sequences of our isolates with previously described isolates from around the world and then draw its phylogenetic tree, this study done. A total of 6 breast formalin-fixed paraffin-embedded (FFPE) of the female patients were included in the study, divided as 4 FFPE malignant tumor and 2 FFPE of benign tumor. The PCR technique was implemented to detect the presence of HPV in breast tissue, and the real-time PCR used to determinant HPV genotypes, then determined a complete nucleotide sequence of HPV of L1 capsid gene, and draw its phylogenetic tree. The nucleotide sequencing finding detects a number of substitution mutation (SNPs) in (L1) gene, which have not been designated before, were identified once in this study population, and revealed that the HPV16 strains have the evolutionary relationship with the South African race, while, the HPV33 and HPV6 showing the evolutionary association with the North American and East Asian race, respectively.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1051-1060
Author(s):  
Claire Remacle ◽  
Denis Baurain ◽  
Pierre Cardol ◽  
René F Matagne

Abstract The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.


3 Biotech ◽  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Nagamani Sandra ◽  
Ankita Tripathi ◽  
S. K. Lal ◽  
Bikash Mandal ◽  
Rakesh Kumar Jain

Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


2020 ◽  
Vol 21 (6) ◽  
pp. 2096
Author(s):  
Przemyslaw Decewicz ◽  
Piotr Golec ◽  
Mateusz Szymczak ◽  
Monika Radlinska ◽  
Lukasz Dziewit

The Ochrobactrum genus consists of an extensive repertoire of biotechnologically valuable bacterial strains but also opportunistic pathogens. In our previous study, a novel strain, Ochrobactrum sp. POC9, which enhances biogas production in wastewater treatment plants (WWTPs) was identified and thoroughly characterized. Despite an insightful analysis of that bacterium, its susceptibility to bacteriophages present in WWTPs has not been evaluated. Using raw sewage sample from WWTP and applying the enrichment method, two virulent phages, vB_OspM_OC and vB_OspP_OH, which infect the POC9 strain, were isolated. These are the first virulent phages infecting Ochrobactrum spp. identified so far. Both phages were subjected to thorough functional and genomic analyses, which allowed classification of the vB_OspM_OC virus as a novel jumbo phage, with a genome size of over 227 kb. This phage encodes DNA methyltransferase, which mimics the specificity of cell cycle regulated CcrM methylase, a component of the epigenetic regulatory circuits in Alphaproteobacteria. In this study, an analysis of the overall diversity of Ochrobactrum-specific (pro)phages retrieved from databases and extracted in silico from bacterial genomes was also performed. Complex genome mining allowed us to build similarity networks to compare 281 Ochrobactrum-specific viruses. Analyses of the obtained networks revealed a high diversity of Ochrobactrum phages and their dissimilarity to the viruses infecting other bacteria.


1998 ◽  
Vol 64 (4) ◽  
pp. 1490-1496 ◽  
Author(s):  
P. R. Jensen ◽  
K. M. Jenkins ◽  
D. Porter ◽  
W. Fenical

ABSTRACT Significantly fewer thraustochytrid protists (zoosporic fungi) were observed in association with healthy leaf tissue of the marine angiosperm Thalassia testudinum than in association with sterilized samples that were returned to the collection site for 48 h. In support of the hypothesis that sea grass secondary metabolites were responsible for these differences, extracts of healthyT. testudinum leaf tissues inhibited the growth of the co-occurring thraustochytrid Schizochytrium aggregatum and deterred the attachment of S. aggregatum motile zoospores to an extract-impregnated substrate. By using S. aggregatumfor bioassay-guided chemical fractionation, a new flavone glycoside was isolated and structurally characterized as luteolin 7-O-β-d-glucopyranosyl-2"-sulfate. Whole-leaf tissue concentrations of this metabolite (4 mg/ml of wet leaf tissue) inhibited S. aggregatum attachment, and a significantly lower concentration (270 μg/ml) reduced thraustochytrid growth by 50%, suggesting that natural concentrations are at least 15 times greater than that needed for significant microbiological effects. These results offer the first complete chemical characterization of a sea grass sulfated flavone glycoside and provide evidence that a secondary metabolite chemically defends T. testudinum against fouling microorganisms.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


2006 ◽  
Vol 57 (3) ◽  
pp. 452-469 ◽  
Author(s):  
Hélène Moussard ◽  
David Moreira ◽  
Marie-Anne Cambon-Bonavita ◽  
Purificación López-García ◽  
Christian Jeanthon

2006 ◽  
Vol 394 (3) ◽  
pp. 575-579 ◽  
Author(s):  
Sergey V. Novoselov ◽  
Deame Hua ◽  
Alexey V. Lobanov ◽  
Vadim N. Gladyshev

Sec (selenocysteine) is a rare amino acid in proteins. It is co-translationally inserted into proteins at UGA codons with the help of SECIS (Sec insertion sequence) elements. A full set of selenoproteins within a genome, known as the selenoproteome, is highly variable in different organisms. However, most of the known eukaryotic selenoproteins are represented in the mammalian selenoproteome. In addition, many of these selenoproteins have cysteine orthologues. Here, we describe a new selenoprotein, designated Fep15, which is distantly related to members of the 15 kDa selenoprotein (Sep15) family. Fep15 is absent in mammals, can be detected only in fish and is present in these organisms only in the selenoprotein form. In contrast with other members of the Sep15 family, which contain a putative active site composed of Sec and cysteine, Fep15 has only Sec. When transiently expressed in mammalian cells, Fep15 incorporated Sec in an SECIS- and SBP2 (SECIS-binding protein 2)-dependent manner and was targeted to the endoplasmic reticulum by its N-terminal signal peptide. Phylogenetic analyses of Sep15 family members suggest that Fep15 evolved by gene duplication.


Sign in / Sign up

Export Citation Format

Share Document