scholarly journals Antibody responses to rhesus cytomegalovirus glycoprotein B in naturally infected rhesus macaques

2003 ◽  
Vol 84 (12) ◽  
pp. 3371-3379 ◽  
Author(s):  
Yujuan Yue ◽  
Shan Shan Zhou ◽  
Peter A. Barry

Rhesus cytomegalovirus (RhCMV) exhibits strong parallels with human CMV (HCMV) in terms of nucleic and amino acid identities, natural history, and mechanisms of persistence and pathogenesis in its natural host, rhesus macaques (Macaca mulatta). To determine whether this non-human primate model would be useful to assess vaccine strategies for HCMV, host immune responses to RhCMV glycoprotein B (gB) were evaluated in RhCMV-infected monkeys. Total protein extracts were prepared from cells transiently transfected with an expression plasmid for either the full-length gB or a derivative (gBΔ, 1–680 aa) lacking both the transmembrane domain and cytoplasmic tail. Western blot analysis showed identical reactivity of macaque sera with full-length gB and its derivative gBΔ, indicating that the immunodominant epitopes of gB are contained in the extracellular portion of the protein. Using gBΔ extract as a solid phase, a sensitive and specific ELISA was established to characterize gB antibody responses in monkeys acutely and chronically infected with RhCMV. During primary infection (seroconversion), gB-specific antibodies developed concurrently and in parallel with total RhCMV-specific antibodies. However, during chronic infection gB-specific antibody responses were variable. A strong correlation was observed between neutralizing and gB-specific antibody levels in RhCMV-seropositive monkeys. Taken together, the results of this study indicate that, similar to host humoral responses to HCMV gB, anti-gB antibodies are an integral part of humoral immunity to RhCMV infection and probably play an important protective role in limiting the extent of RhCMV infection. Thus, the rhesus macaque model of HCMV infection is relevant for testing gB-based immune therapies.

2006 ◽  
Vol 81 (3) ◽  
pp. 1095-1109 ◽  
Author(s):  
Yujuan Yue ◽  
Amitinder Kaur ◽  
Meghan K. Eberhardt ◽  
Nadine Kassis ◽  
Shan Shan Zhou ◽  
...  

ABSTRACT Rhesus cytomegalovirus (RhCMV) infection of macaques exhibits strong similarities to human CMV (HCMV) persistence and pathogenesis. The immunogenicity of DNA vaccines encoding three RhCMV proteins (a truncated version of glycoprotein B lacking the transmembrane region and endodomain [gBΔTM], phosphoprotein 65-2 [pp65-2], and viral interleukin-10 [vIL-10]) was evaluated in rhesus macaques. Two groups of monkeys (four per group) were genetically immunized four times with a mixture of either pp65-2 and gBΔTM or pp65-2, vIL-10, and gBΔTM. The vaccinees developed anti-gB and anti-pp65-2 antibodies in addition to pp65-2 cellular responses after the second booster immunization, with rapid responses observed with subsequent DNA injections. Weak vIL-10 immune responses were detected in two of the four immunized animals. Neutralizing antibodies were detected in seven monkeys, although titers were weak compared to those observed in naturally infected animals. The immunized monkeys and naïve controls were challenged intravenously with 105 PFU of RhCMV. Anamnestic binding and neutralizing antibody responses were observed 1 week postchallenge in the vaccinees. DNA vaccination-induced immune responses significantly decreased peak viral loads in the immunized animals compared to those in the controls. No difference in peak viral loads was observed between the pp65-2/gBΔTM DNA- and pp65-2/vIL-10/gBΔTM-vaccinated groups. Antibody responses to nonvaccine antigens were lower postchallenge in both vaccine groups than in the controls, suggesting long-term control of RhCMV protein expression. These data demonstrated that DNA vaccines targeting the RhCMV homologues of HCMV gB and pp65 altered the course of acute and persistent RhCMV infection in a primate host.


1980 ◽  
Vol 29 (3) ◽  
pp. 1160-1168
Author(s):  
G Taylor ◽  
C J Howard

Class-specific antibodies were measured by a solid-phase microradioimmunoassay in the sera and lung washings of mice after intranasal or intravenous inoculation with live Mycoplasma pulmonis and after systemic, intranasal, or combined vaccination with Formalin-inactivated mycoplasmas. After intranasal or intravenous inoculation with live organisms, serum antibodies were first detected in immunoglobulin M (IgM) followed by IgG2, IgG1, and IgA classes, but significant levels of IgA developed only in those mice inoculated intranasally. The appearance of antibodies in lung washings was later than in serum, but again these were predominantly IgG2 and IgG1. After inoculation with killed organisms, serum antibodies were predominantly IgG1, although IgG2, IgM, and, in intranasally vaccinated mice, IgA were also present. Only IgG1 was detected in lung washings from mice vaccinated systemically, but IgA and IgG2 were present in addition in animals vaccinated intranasally. Immunofluorescence studies indicated that some antibody in lung washings from the latter group of animals was produced locally. A comparison of the levels of various class-specific antibodies and resistance to intranasal challenge suggested that local antibody of any immunoglobulin class is capable of mediating resistance in the lungs to M. pulmonis infection.


2020 ◽  
Author(s):  
Pradeep Darshana Pushpakumara ◽  
Chandima Jeewandara ◽  
Laksiri Gomes ◽  
Yashodha Perera ◽  
Ananda Wijewickrama ◽  
...  

AbstractBackgroundAlthough immune responses to the Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) have a potential to modulate the immune responses to each other, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV specific, DENV non cross-reactive antibody responses by identifying JEV specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV specific antibodies associate with dengue disease severity.Methodology/Principal findings20 JEV specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed in individuals who were non-immune to JEV and DENV (JEV-DENV-, N=30), those who were only immune to the JEV and not DENV (JEV+DENV-, N=30), those who were only immune to DENV(JEV-DENV+, N=30) and in those who were immune to both viruses (JEV+DENV+, N=30). 7/20 peptides were found to be highly immunogenic and specific and these 7 peptides were used as a pool to further evaluate JEV-specific responses. All 30/30 JEV+DENV-and 30/30 JEV+DENV+individuals, and only 3/30 (10%) JEV-DENV+individuals responded to this pool. We further evaluated this pool of 7 peptides in patients following primary and secondary dengue infection during the convalescent period and found that the JEV-specific peptides, were unlikely to cross react with DENV IgG antibodies. We further compared this in-house ELISA developed with the peptide pool with an existing commercial JEV IgG assay to identify JEV-specific IgG following vaccination, and our in-house ELISA was found to be more sensitive. We then proceeded to investigate if the presence of JEV-specific antibodies were associated with dengue disease severity, and we found that those who had past severe dengue (n=175) were significantly more likely (p<0.0001) to have JEV-specific antibodies than those with past non-severe dengue (n=175) (OR 5.3, 95% CI 3.3 to 8.3).Conclusions/SignificanceAs our data show that this assay is highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.Author summaryBoth Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) co-circulate in the same geographical region and have a potential to modulate the immune responses to each other. However, due to the difficulty in identifying antibody responses specific to either virus due to the highly cross-reactive nature of virus-specific antibodies, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV-specific, DENV non cross-reactive antibody responses by identifying JEV-specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV-specific antibodies associates with dengue disease severity. 20 JEV-specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed. We found that seven peptides were highly immunogenic and specific to the JEV and we further evaluated the usefulness of an ELISA developed using these pools of peptides. We found that our in-house ELISA was found to be significantly more sensitive some of the existing commercial assays. As this assay appears to be highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.


2019 ◽  
Vol 116 (26) ◽  
pp. 13036-13041 ◽  
Author(s):  
Jesse D. Deere ◽  
W. L. William Chang ◽  
Andradi Villalobos ◽  
Kimberli A. Schmidt ◽  
Ashlesha Deshpande ◽  
...  

Human cytomegalovirus (HCMV) causes severe disease in infants and immunocompromised people. There is no approved HCMV vaccine, and vaccine development strategies are complicated by evidence of both persistent infection and reinfection of people with prior immunity. The greatest emphasis has been placed on reducing transmission to seronegative pregnant women to prevent vertical transmission and its potentially severe sequelae. Increasing evidence suggests that the earliest host–HCMV interactions establish conditions for viral persistence, including evasion of host immune responses to the virus. Using a nonhuman primate model of HCMV infection, we show that rhesus macaques immunized against viral interleukin-10 (IL-10) manifest delayed rhesus cytomegalovirus (RhCMV) acquisition and altered immune responses to the infection when it does occur. Among animals with the greatest antiviral IL-10–neutralizing activity, the timing of RhCMV seroconversion was delayed by an average of 12 weeks. After acquisition, such animals displayed an antibody response to the new infection, which peaked as expected after 2 weeks but then declined rapidly. In contrast, surprisingly, vaccination with glycoprotein B (gB) protein had no discernible impact on these outcomes. Our results demonstrate that viral IL-10 is a key regulator of successful host immune responses to RhCMV. Viral IL-10 is, therefore, an important target for vaccine strategies against cytomegalovirus (CMV). Furthermore, given the immunoregulatory function of viral IL-10, targeting this protein may prove synergistic with other vaccine therapies and targets. Our study also provides additional evidence that the earliest host–CMV interactions can have a significant impact on the nature of persistent infection.


2021 ◽  
Author(s):  
Yujuan Yue ◽  
W. L. William Chang ◽  
Julia Li ◽  
Nancy Nguyen ◽  
Kimberli A. Schmidt ◽  
...  

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques ( Macaca mulatta ) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by non-natural routes ( e.g. , subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Herein, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2831-2831
Author(s):  
Sebastian Kobold ◽  
Yanran Cao ◽  
Sinje Tams ◽  
Britta Marlen Bartels ◽  
Tim Lütkens ◽  
...  

Abstract Abstract 2831 Poster Board II-807 Its tumor-restricted expression and its high immunogenicity render cancer-testis (CT) antigen NY-ESO-1 an exquisite target for antigen-specific immunotherapies. Spontaneous antibody responses against NY-ESO-1 are typically found in a subset of patients with solid tumors. However, little is known regarding serological immune responses against NY-ESO-1 in patients with hematological malignancies including multiple myeloma (MM). Furthermore, no consequent longitudinal analyses have been performed correlating NY-ESO-1-specific antibody titers with the clinical development of the given malignancy. Finally, nothing is known regarding the functional capabilities of spontaneously occurring anti-NY-ESO-1 antibodies in MM or other malignancies. Here, we performed the first longitudinal and functional investigation of NY-ESO-1-specific antibody responses in MM analyzing 1100 sera and 200 bone marrow plasma samples of 194 MM patients. Sera and BM plasma samples of 100 healthy donors served as controls. Screening sera and bone marrow plasma of our MM patients by Enzyme-linked Immunosorbent Assay (ELISA) using full length recombinant NY-ESO-1 protein, we found that 5/194 patients had high-titered antibody responses against this CT antigen. A quantitative B cell ELISPOT demonstrated NY-ESO-1-specific B cells in the peripheral blood as well as in the bone marrow of the respective MM patients. In a western blot analysis, spontaneous NY-ESO-1-specific immune responses in the patients were found to be highly specific for both native and recombinant protein. Epitope mapping in an ELISA using 18 overlapping NY-ESO-1 20mer peptides showed that antibody responses were restricted to the first 70 amino acids of the full-length protein. NY-ESO-1-specific antibodies consisted mainly of IgG1 and to a lower extent of IgG3 subtypes. No IgG2, IgG4, IgM or IgA antibodies against NY-ESO-1 were detected. Interestingly, antibody affinity increased over the course of the disease suggesting an affinity driven antibody maturation. Accordingly, NY-ESO-1-specific antibodies of MM patients were found to be potent complement activators in a western blot technique. On the other hand, despite the high functional capabilities of NY-ESO-1-specific antibodies, antibody titers increased with each NY-ESO-1-expressing (as indicated by reverse-transcriptase-polymerase-chain-reaction and immunohistochemistry) recurrence of the disease. In conclusion, we demonstrate here the spontaneous occurrence of high-titered NY-ESO-1-specific antibodies in MM patients. One reason for the relatively low frequency of antibody responses against NY-ESO-1 might be that most patients were in early stages of the disease or in remission at the time the analysis was performed. Antibodies were produced by NY-ESO-1-specific B cells detectable in the bone marrow as well as in the peripheral blood of the patients. NY-ESO-1-specific antibodies were evoked by a distinct and immunodominant fragment of NY-ESO-1. Affinity maturation of this response and complement activation by the spontaneously occurring NY-ESO-1-specific IgG1-type antibodies speak in favour of an effective serological immune response. However, positive correlation of antibody titers with tumor burden and recurrence of the disease suggest an inability of antibodies targeting intracellular protein NY-ESO-1 to control the course of the disease, at least in the long run. Antigen-specific immunotherapy might be necessary to shape NY-ESO-1-specific immunity in MM patients and, particularly, to mobilize tumor-specific T cell responses. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
ZM Huo ◽  
J Miles ◽  
PG Riches ◽  
T Harris

Background: Measurement of antibody responses to polysaccharide antigens is regarded as an important assessment of an individual's ability to respond to carbohydrate antigens. The currently used assays for the measurement of pneumococcal-specific antibody use the multi-serotype vaccine Pneumovax® as the detection antigen. Methods: An equal potency enzyme-linked immunosorbent assay (ELISA) system was used to compare the measurement of serotype-specific antibody with the multi-serotype assay. Results: Our results show that the concentration of specific antibody to Pneumovax is not related to the concentration of antibody to the individual serotypes. Neither is any correlation found between the antibody concentrations to any of the three single serotypes investigated, to the mixture of the three serotypes or to Pneumovax. Conclusion: We conclude that the measurement of the concentration of the specific antibody to the mixed serotypes present in Pneumovax has serious limitations when used to evaluate the protection acquired from Pneumovax immunization against any specific serotype.


2007 ◽  
Vol 14 (8) ◽  
pp. 931-936 ◽  
Author(s):  
Monica E. Embers ◽  
Mary B. Jacobs ◽  
Barbara J. B. Johnson ◽  
Mario T. Philipp

ABSTRACTLyme borreliosis (LB) is a disease for which antibody-based detection assays are often required for diagnosis. The variable surface molecule VlsE and IR6, one of its invariable regions, are commonly targeted by the antibody response in infected individuals. A series of enzyme-linked immunosorbent assays was performed to comparatively examine the antibody responses of North American LB patients (n= 37) to VlsE and invariable segments of this molecule. Both immunoglobulin M (IgM) and IgG responses to full-length VlsE and to peptides reproducing invariable regions 2, 4, and 6, as well as the invariable domains at the amino and carboxyl termini of VlsE, were assessed. The proportions and specificities of reactivity to the invariable segments were tested by using cognate peptides as competitors for VlsE binding by patient serum antibodies. IR6 epitopes (by the C6 peptide) were found to dominate the response to invariable segments. IR6 (C6)-specific antibodies were detected in 78% of the serum specimens, whereas <40% of patients generated antibodies that bound the N- or C-terminal domain and <12% of patients responded to either IR2 or IR4. Interestingly, 15 of 37 patients generated IgG antibodies that reacted with C6 but not with VlsE. Conversely, IgM responses were frequent for VlsE but not for invariable segments. A representative number of the serum specimens (n= 8) that contained IgG antibodies reacting with both C6 and VlsE was assessed in competition experiments, using C6 as a competitor. Only half of these specimens contained IgG antibodies whose binding to VlsE could be inhibited >50% by competition with the added C6 peptide. The median percent inhibition was 45.5%. These findings indicate that IR6 epitopes are largely concealed from the VlsE molecular surface and that full-length VlsE-based diagnosis likely detects antibodies to conformational and/or variable region epitopes.


Vaccine ◽  
2016 ◽  
Vol 34 (44) ◽  
pp. 5329-5335 ◽  
Author(s):  
Rebecca Schmidt ◽  
Edgar Holznagel ◽  
Britta Neumann ◽  
Nina Alex ◽  
Bevan Sawatsky ◽  
...  

2021 ◽  
Author(s):  
Catherine Jacob-Dolan ◽  
Jared Feldman ◽  
Katherine McMahan ◽  
Jingyou Yu ◽  
Roland Zahn ◽  
...  

Vaccines are being rapidly developed with the goal of ending the SARS-CoV-2 pandemic. However, the extent to which SARS-CoV-2 vaccination induces serum responses that cross-react with other coronaviruses remains poorly studied. Here we define serum profiles in rhesus macaques after vaccination with DNA or Ad26 based vaccines expressing SARS-CoV-2 Spike protein followed by SARS-CoV-2 challenge, or SARS-CoV-2 infection alone. Analysis of serum responses showed robust reactivity to the SARS-CoV-2 full-length Spike protein and receptor binding domain (RBD), both included in the vaccine. However, serum cross-reactivity to the closely related sarbecovirus SARS-CoV-1 Spike and RBD, was reduced. Reactivity was also measured to the distantly related common cold alpha-coronavirus, 229E and NL63, and beta-coronavirus, OC43 and HKU1, Spike proteins. Using SARS-COV-2 and SARS-CoV-1 lentivirus based pseudoviruses, we show that neutralizing antibody responses were predominantly SARS-CoV-2 specific. These data define patterns of cross-reactive binding and neutralizing serum responses induced by SARS-CoV-2 infection and vaccination in rhesus macaques. Our observations have important implications for understanding polyclonal responses to SARS-CoV-2 Spike, which will facilitate future CoV vaccine assessment and development. Importance The rapid development and deployment of SARS-CoV-2 vaccines has been unprecedented. In this study, we explore the cross-reactivity of SARS-CoV-2 specific antibody responses to other coronaviruses. By analyzing responses from NHPs both before and after immunization with DNA or Ad26 vectored vaccines, we find patterns of cross reactivity that mirror those induced by SARS-CoV-2 infection. These data highlight the similarities between infection and vaccine induced humoral immunity for SARS-CoV-2 and cross-reactivity of these responses to other CoVs.


Sign in / Sign up

Export Citation Format

Share Document