scholarly journals Behavioral variation in Drosophila melanogaster: no evidence for common alleles of large- effect at the foraging gene in a population from North Carolina, USA

2014 ◽  
Author(s):  
Thomas Turner ◽  
Christopher C Giauque ◽  
Daniel R Schrider ◽  
Andrew D Kern

It has been postulated that natural populations of Drosophila melanogaster are comprised of two behavioral morphs termed "rover" and "sitter", and that this variation is caused mainly by large-effect alleles at a single locus. Contrary to common assertions, however, published support for the existence of common large effect alleles in nature is quite limited. To further investigate, we quantified the foraging behavior of 36 sequenced strains from a natural population, performed an association study, and described patterns of molecular evolution at the foraging locus. Though there was significant variation in foraging behavior among genotypes, this variation was continuously distributed and not significantly associated with genetic variation at the foraging gene. Patterns of molecular population genetic variation at this gene also provide no support for the hypothesis that for is a target of recent balancing selection. Though our data only apply to this specific population, we propose that additional data is required to support a hypothesis of common alleles of large effect on foraging behavior in nature.

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


1984 ◽  
Vol 43 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Billy W. Geer ◽  
Cathy C. Laurie-Ahlberg

SUMMARYGenetic variation in the modulating effect of dietary sucrose was assessed in Drosophila melanogaster by examining 27 chromosome substitution lines coisogenic for the X and second chromosomes and possessing different third isogenic chromosomes derived from natural populations. An increase in the concentration of sucrose from 0·1% to 5% in modified Sang's medium C significantly altered the activities of 11 of 15 enzyme activities in third instar larvae, indicating that dietary sucrose modulates many, but not all, of the enzymes of D. melanogaster. A high sucrose diet promoted high activities of enzymes associated with lipid and glycogen synthesis and low activities of enzymes of the glycolytic and Krebs cycle pathways, reflecting the physiological requirements of the animal. Analyses of variance revealed significant genetic variation in the degrees to which sucrose modulated several enzyme activities. Analysis of correlations revealed some relationships between enzymes in the genetic effects on the modulation process. These observations suggest that adaptive evolutionary change may depend in part on the selection of enzyme activity modifiers that are distributed throughout the genome.


1980 ◽  
Vol 77 (2) ◽  
pp. 1073-1077 ◽  
Author(s):  
C. C. Laurie-Ahlberg ◽  
G. Maroni ◽  
G. C. Bewley ◽  
J. C. Lucchesi ◽  
B. S. Weir

2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Michael D. Jardine ◽  
Filip Ruzicka ◽  
Charlotte Diffley ◽  
Kevin Fowler ◽  
Max Reuter

The amount of genetic variation for fitness within populations tends to exceed that expected under mutation–selection–drift balance. Several mechanisms have been proposed to actively maintain polymorphism and account for this discrepancy, including antagonistic pleiotropy (AP), where allelic variants have opposing effects on different components of fitness. Here, we identify a non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster and measure survival and reproductive components of fitness in males and females of replicate lines carrying each respective allele. Expressing the fruitless region in a hemizygous state reveals a pattern of AP, with one allele generating greater reproductive fitness and the other conferring greater survival to adulthood. Different fitness effects were observed in an alternative genetic background, which may reflect dominance reversal and/or epistasis. Our findings link sequence-level variation at a single locus with complex effects on a range of fitness components, thus helping to explain the maintenance of genetic variation for fitness. Transcription factors, such as fruitless , may be prime candidates for targets of balancing selection since they interact with multiple target loci and their associated phenotypic effects.


1984 ◽  
Vol 62 (5) ◽  
pp. 995-1005 ◽  
Author(s):  
Deborah J. Lodge ◽  
Kurt J. Leonard

Patterns of genetic variation were studied in natural populations of Cochliobolus carbonum Nelson (anamorph Helminthosporium carbonum Ullstrup), a haploid asexually reproducing fungus. Two virulence races (2 and 3) are common on corn in North Carolina. Race 3 has occurred in the Appalachian mountains for at least 25 years, but has recently expanded its range eastward. The expanded range of race 3 cannot be explained by adaptation through parasexual recombination between races or mutation alone. Five polymorphic traits in addition to virulence were compared in races 2 and 3 to evaluate possible recombination between races. If sexual recombination occurred between races, it was rare and was not detected in this study. The simplest explanation for the expansion of race 3 involves historical factors such as increased corn production and changes in weather which aided gene flow. A steep cline was found on the Appalachian escarpment, where the proportion of race 3 isolates dropped from 100% at high elevations to 30% at low elevations over a distance of 7–20 km. No barriers to gene flow were found on the escarpment, suggesting that the environment and possibly cultural practices may restrict race 3 at low elevations and race 2 at high elevations. Race 3 may adapt to conditions in eastern North Carolina only slowly via mutation unless recombination occurs and has gone undetected.


Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
Michael E Zwick ◽  
Jennifer L Salstrom ◽  
Charles H Langley

Abstract Genetic variation in nondisjunction frequency among X chromosomes from two Drosophila melanogaster natural populations is examined in a sensitized assay. A high level of genetic variation is observed (a range of 0.006-0.241). Two naturally occurring variants at the nod locus, a chromokinesin required for proper achiasmate chromosome segregation, are significantly associated with an increased frequency of nondisjunction. Both of these polymorphisms are found at intermediate frequency in widely distributed natural populations. To account for these observations, we propose a general model incorporating unique opportunities for meiotic drive during female meiosis. The oötid competition model can account for both high mean rates of female-specific nondisjunction in Drosophila and humans as well as the standing genetic variation in this critical fitness character in natural populations.


2018 ◽  
Author(s):  
Martin Kapun ◽  
Maite G. Barrón ◽  
Fabian Staubach ◽  
Darren J. Obbard ◽  
R. Axel W. Wiberg ◽  
...  

AbstractGenetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatio-temporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterise variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


1980 ◽  
Vol 77 (2) ◽  
pp. 1091-1095 ◽  
Author(s):  
R. A. Voelker ◽  
C. H. Langley ◽  
A. J. L. Brown ◽  
S. Ohnishi ◽  
B. Dickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document