scholarly journals Genetic Variation in Rates of Nondisjunction: Association of Two Naturally Occurring Polymorphisms in the Chromokinesin nod With Increased Rates of Nondisjunction in Drosophila melanogaster

Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
Michael E Zwick ◽  
Jennifer L Salstrom ◽  
Charles H Langley

Abstract Genetic variation in nondisjunction frequency among X chromosomes from two Drosophila melanogaster natural populations is examined in a sensitized assay. A high level of genetic variation is observed (a range of 0.006-0.241). Two naturally occurring variants at the nod locus, a chromokinesin required for proper achiasmate chromosome segregation, are significantly associated with an increased frequency of nondisjunction. Both of these polymorphisms are found at intermediate frequency in widely distributed natural populations. To account for these observations, we propose a general model incorporating unique opportunities for meiotic drive during female meiosis. The oötid competition model can account for both high mean rates of female-specific nondisjunction in Drosophila and humans as well as the standing genetic variation in this critical fitness character in natural populations.

Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 279-292
Author(s):  
Yuichiro Hiraizumi ◽  
Anita M Thomas

ABSTRACT Several natural populations of D. melanogaster were investigated for the presence (or absence) of the Segregation Distorter (SD) chromosomes and their suppressor systems. The SD chromosomes were found, at frequencies of a few percent, in two independent samples taken in different years from a Raleigh, North Carolina, population, whereas no SD chromosomes were found in samples collected from several populations in Texas. The populations in these localities were found to contain suppressor X chromosomes in high frequencies (75% or higher). They also contained relatively low frequencies of partial suppressor or insensitive second chromosomes of varying degrees, but completely insensitive second chromosomes were practically absent in all populations examined. The frequencies of suppressor X chromosomes, as well as those of the partially insensitive or suppressor second chromosomes, were the same among the populations investigated. This suggests the possibility that the development of a suppressor system of SD in a population could be independent of the presence of an SD chromosome. Segregation distortion appeared to be occurring in natural genetic backgrounds, but the degree of distortion varied among males of different genotypes. There were many instances in which the SD chromosomes showed transmission frequencies from their heterozygous male parents that were smaller than 0.6 and, in several cases, even smaller than 0.5. The presence of a recessive suppressor, or suppressors, of SD in natural populations was suggested.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 627-636
Author(s):  
C Q Lai ◽  
T F Mackay

Abstract To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.


1984 ◽  
Vol 43 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Billy W. Geer ◽  
Cathy C. Laurie-Ahlberg

SUMMARYGenetic variation in the modulating effect of dietary sucrose was assessed in Drosophila melanogaster by examining 27 chromosome substitution lines coisogenic for the X and second chromosomes and possessing different third isogenic chromosomes derived from natural populations. An increase in the concentration of sucrose from 0·1% to 5% in modified Sang's medium C significantly altered the activities of 11 of 15 enzyme activities in third instar larvae, indicating that dietary sucrose modulates many, but not all, of the enzymes of D. melanogaster. A high sucrose diet promoted high activities of enzymes associated with lipid and glycogen synthesis and low activities of enzymes of the glycolytic and Krebs cycle pathways, reflecting the physiological requirements of the animal. Analyses of variance revealed significant genetic variation in the degrees to which sucrose modulated several enzyme activities. Analysis of correlations revealed some relationships between enzymes in the genetic effects on the modulation process. These observations suggest that adaptive evolutionary change may depend in part on the selection of enzyme activity modifiers that are distributed throughout the genome.


1980 ◽  
Vol 77 (2) ◽  
pp. 1073-1077 ◽  
Author(s):  
C. C. Laurie-Ahlberg ◽  
G. Maroni ◽  
G. C. Bewley ◽  
J. C. Lucchesi ◽  
B. S. Weir

Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 143-151
Author(s):  
Andrew G Clark

ABSTRACT Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.


Sign in / Sign up

Export Citation Format

Share Document