scholarly journals Are phylogenetic patterns the same in anthropology and biology?

2014 ◽  
Author(s):  
David Morrison

The use of phylogenetic methods in anthropological fields such as archaeology, linguistics and stemmatology (involving what are often called ?culture data?) is based on an analogy between human cultural evolution and biological evolution. We need to understand this analogy thoroughly, including how well anthropology data fit the model of a phylogenetic tree, as used in biology. I provide a direct comparison of anthropology datasets with both phenotype and genotype datasets from biology. The anthropology datasets fit the tree model approximately as well as do the genotype data, which is detectably worse than the fit of the phenotype data. This is true for datasets with <500 parsimony-informative characters, as well as for larger datasets. This implies that cross-cultural (horizontal) processes have been important in the evolution of cultural artifacts, as well as branching historical (vertical) processes, and thus a phylogenetic network will be a more appropriate model than a phylogenetic tree.

2021 ◽  
Author(s):  
Cara Evans ◽  
Simon J. Greenhill ◽  
Joseph Watts ◽  
Johann-Mattis List ◽  
Carlos A. Botero ◽  
...  

Modern phylogenetic methods are increasingly being used to address questions about macro-level patterns in cultural evolution. These methods can illuminate the unobservable histories of cultural traits and identify the evolutionary drivers of trait-change over time, but their application is not without pitfalls. Here we outline the current scope of research in cultural tree thinking, highlighting a toolkit of best practices to navigate and avoid the pitfalls and ‘abuses’ associated with their application. We emphasise two principles that support the appropriate application of phylogenetic methodologies in cross-cultural research: researchers should (1) draw on multiple lines of evidence when deciding if and which types of phylogenetic methods and models are suitable for their cross-cultural data, and (2) carefully consider how different cultural traits might have different evolutionary histories across space and time. When used appropriately phylogenetic methods can provide powerful insights into the processes of evolutionary change that have shaped the broad patterns of human history.


Author(s):  
Cara L. Evans ◽  
Simon J. Greenhill ◽  
Joseph Watts ◽  
Johann-Mattis List ◽  
Carlos A. Botero ◽  
...  

Modern phylogenetic methods are increasingly being used to address questions about macro-level patterns in cultural evolution. These methods can illuminate the unobservable histories of cultural traits and identify the evolutionary drivers of trait change over time, but their application is not without pitfalls. Here, we outline the current scope of research in cultural tree thinking, highlighting a toolkit of best practices to navigate and avoid the pitfalls and ‘abuses' associated with their application. We emphasize two principles that support the appropriate application of phylogenetic methodologies in cross-cultural research: researchers should (1) draw on multiple lines of evidence when deciding if and which types of phylogenetic methods and models are suitable for their cross-cultural data, and (2) carefully consider how different cultural traits might have different evolutionary histories across space and time. When used appropriately phylogenetic methods can provide powerful insights into the processes of evolutionary change that have shaped the broad patterns of human history. This article is part of the theme issue ‘Foundations of cultural evolution'.


2020 ◽  
Author(s):  
Patrick E. Savage ◽  
Steven Brown

We propose a return to the forgotten agenda of comparative musicology, one that is updated with the paradigms of modern evolutionary theory and scientific methodology. Ever since the field of comparative musicology became redefined as ethnomusicology in the mid-20th century, its original research agenda has been all but abandoned by musicologists, not least the overarching goal of cross-cultural musical comparison. We outline here five major themes that underlie the re-establishment of comparative musicology: (1) classification, (2) cultural evolution, (3) human history, (4) universals, and (5) biological evolution. Throughout the article, we clarify key ideological, methodological and terminological objections that have been levied against musical comparison. Ultimately, we argue for an inclusive, constructive, and multidisciplinary field that analyzes the world’s musical diversity, from the broadest of generalities to the most culture-specific particulars, with the aim of synthesizing the full range of theoretical perspectives and research methodologies available.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hirotaka Matsumoto ◽  
Takahiro Mimori ◽  
Tsukasa Fukunaga

Abstract Advances in experimental technologies, such as DNA sequencing, have opened up new avenues for the applications of phylogenetic methods to various fields beyond their traditional application in evolutionary investigations, extending to the fields of development, differentiation, cancer genomics, and immunogenomics. Thus, the importance of phylogenetic methods is increasingly being recognized, and the development of a novel phylogenetic approach can contribute to several areas of research. Recently, the use of hyperbolic geometry has attracted attention in artificial intelligence research. Hyperbolic space can better represent a hierarchical structure compared to Euclidean space, and can therefore be useful for describing and analyzing a phylogenetic tree. In this study, we developed a novel metric that considers the characteristics of a phylogenetic tree for representation in hyperbolic space. We compared the performance of the proposed hyperbolic embeddings, general hyperbolic embeddings, and Euclidean embeddings, and confirmed that our method could be used to more precisely reconstruct evolutionary distance. We also demonstrate that our approach is useful for predicting the nearest-neighbor node in a partial phylogenetic tree with missing nodes. Furthermore, we proposed a novel approach based on our metric to integrate multiple trees for analyzing tree nodes or imputing missing distances. This study highlights the utility of adopting a geometric approach for further advancing the applications of phylogenetic methods.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2018 ◽  
Author(s):  
Kenny Smith

Recent work suggests that linguistic structure develops through cultural evolution, as a consequence of the repeated cycle of learning and use by which languages persist. This work has important implications for our understanding of the evolution of the cognitive basis for language: in particular, human language and the cognitive capacities underpinning it are likely to have been shaped by co-evolutionary processes, where the cultural evolution of linguistic systems is shaped by and in turn shapes the biological evolution of the capacities underpinning language learning. I review several models of this co-evolutionary process, which suggest that the precise relationship between evolved biases in individuals and the structure of linguistic systems depends on the extent to which cultural evolution masks or unmasks individual-level cognitive biases from selection. I finish by discussing how these co-evolutionary models might be extended to cases where the biases involved in learning are themselves shaped by experience, as is the case for language.


Author(s):  
William Hoppitt ◽  
Kevin N. Laland

This chapter describes a variety of approaches to modeling social learning, cultural evolution, and gene-culture coevolution. The model-building exercise typically starts with a set of assumptions about the key processes to be explored, along with the nature of their relations. These assumptions are then translated into the mathematical expressions that constitute the model. The operation of the model is then investigated, normally using a combination of analytical mathematical techniques and simulation, to determine relevant outcomes, such as the equilibrium states or patterns of change over time. The chapter presents examples of the modeling of cultural transmission and considers parallels between cultural and biological evolution. It then discusses theoretical approaches to social learning and cultural evolution, including population-genetic style models of cultural evolution and gene-culture coevolution, neutral models and random copying, social foraging theory, spatially explicit models, reaction-diffusion models, agent-based models, and phylogenetic models.


Author(s):  
Kevin N. Laland

This chapter traces the evolution of human civilization from nomadic hunter-gatherer societies to the advent of agriculture and its large-scale impacts on the world. It describes this history in three ages of adaptive evolution. First, there was the age in which biological evolution dominated, in which we adapted to the circumstances of life in a manner no different from every other creature. Second came the age when gene–culture coevolution was in the ascendency. Through cultural activities, our ancestors set challenges to which they adapted biologically. In doing so, they released the brake that the relatively slow rate of independent environmental change imposes on other species. The results are higher rates of morphological evolution in humans compared to other mammals, with human genetic evolution reported as accelerating more than a hundredfold over the last 40,000 years. Now we live in the third age, where cultural evolution dominates. Cultural practices provide humanity with adaptive challenges, but these are then solved through further cultural activity, before biological evolution gets moving.


2021 ◽  
pp. 45-72
Author(s):  
Steven Brown

This chapter examines both the biological and cultural evolution of the arts. Biological evolution of the arts deals with how humans evolved the species-specific capacities to create and appreciate artworks, while cultural evolution is about how artworks themselves, as cultural products, undergo changes in persistence over historical time and geographic location. The study of biological evolution includes both phylogenetic (or historical) and adaptationist (or Darwinian) approaches. The study of cultural evolution of the arts reveals the importance of a ‘creativity/aesthetics cycle’ in which the products of human creativity get appraised for their level of appeal by the aesthetic system, allowing them to either be transmitted to future generations or die out. This unification of creativity and aesthetics has far-reaching implications for both fields of study.


2019 ◽  
Vol 35 (19) ◽  
pp. 3852-3854 ◽  
Author(s):  
You Tang ◽  
Xiaolei Liu

Abstract Motivation Plenty of Genome-Wide-Association-Study (GWAS) methods have been developed for mapping genetic markers that associated with human diseases and agricultural economic traits. Computer simulation is a nice tool to test the performances of various GWAS methods under certain scenarios. Existing tools are either inefficient in terms of computation and memory efficiency or inconvenient to use to simulate big, realistic genotype data and phenotype data to evaluate available GWAS methods. Results Here, we present a GWAS simulation tool named G2P that can be used to simulate genotype data, phenotype data and perform power evaluation of GWAS methods. G2P is a user-friendly tool with all functions is provided in both graphical user interface and pipeline manners and it is available for Windows, Mac and Linux environments. Furthermore, G2P achieves maximum efficiency in terms of both memory usage and simulation speed; with G2P, the simulation of genotype data that includes 1 000 000 samples and 2 000 000 markers can be accomplished in 5 h. Availability and implementation The G2P software, user manual, and example datasets are freely available at GitHub: https://github.com/XiaoleiLiuBio/G2P. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document