scholarly journals Adaptation in isolated populations: when does it happen and when can we tell?

2016 ◽  
Author(s):  
Jessica L. Crisci ◽  
Matthew D. Dean ◽  
Peter Ralph

AbstractIsolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans for positive selection in such populations have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment. Using simulations of single loci under positive selection and population genetics theory, we examine how population size and age of the population isolate affects the ability of outlier scans for selection to identify adaptive alleles using both single site measures and haplotype structure. We find and explain an optimal combination of selection strength, starting frequency, and age of the adaptive allele, which we refer to as a Goldilocks zone, where adaptation is likely to occur, and yet the adaptive variants are most likely to derive from a single ancestor (a “hard” selective sweep); in this zone, four commonly used statistics detect selection with high power. Real-world examples of both island colonization and experimental evolution studies are discussed. Our study provides concrete considerations to be made before embarking on whole genome sequencing of differentiated populations.

2016 ◽  
Vol 283 (1834) ◽  
pp. 20160731 ◽  
Author(s):  
J. Albert C. Uy ◽  
Elizabeth A. Cooper ◽  
Stephen Cutie ◽  
Moira R. Concannon ◽  
Jelmer W. Poelstra ◽  
...  

The independent evolution of similar traits across multiple taxa provides some of the most compelling evidence of natural selection. Little is known, however, about the genetic basis of these convergent or parallel traits: are they mediated by identical or different mutations in the same genes, or unique mutations in different genes? Using a combination of candidate gene and reduced representation genomic sequencing approaches, we explore the genetic basis of and the evolutionary processes that mediate similar plumage colour shared by isolated populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. A genome-wide association study (GWAS) that explicitly controlled for population structure revealed that mutations in known pigmentation genes are the best predictors of parallel plumage colour. That is, entirely black or melanic birds from one small island share an amino acid substitution in the melanocortin-1 receptor (MC1R), whereas similarly melanic birds from another small island over 100 km away share an amino acid substitution in a predicted binding site of agouti signalling protein (ASIP). A third larger island, which separates the two melanic populations, is inhabited by birds with chestnut bellies that lack the melanic MC1R and ASIP allelic variants. Formal F ST outlier tests corroborated the results of the GWAS and suggested that strong, directional selection drives the near fixation of the MC1R and ASIP variants across islands. Our results, therefore, suggest that selection acting on different mutations with large phenotypic effects can drive the evolution of parallel melanism, despite the relatively small population size on islands.


2020 ◽  
Vol 12 (6) ◽  
pp. 890-904 ◽  
Author(s):  
Neda Barghi ◽  
Christian Schlötterer

Abstract In molecular population genetics, adaptation is typically thought to occur via selective sweeps, where targets of selection have independent effects on the phenotype and rise to fixation, whereas in quantitative genetics, many loci contribute to the phenotype and subtle frequency changes occur at many loci during polygenic adaptation. The sweep model makes specific predictions about frequency changes of beneficial alleles and many test statistics have been developed to detect such selection signatures. Despite polygenic adaptation is probably the prevalent mode of adaptation, because of the traditional focus on the phenotype, we are lacking a solid understanding of the similarities and differences of selection signatures under the two models. Recent theoretical and empirical studies have shown that both selective sweep and polygenic adaptation models could result in a sweep-like genomic signature; therefore, additional criteria are needed to distinguish the two models. With replicated populations and time series data, experimental evolution studies have the potential to identify the underlying model of adaptation. Using the framework of experimental evolution, we performed computer simulations to study the pattern of selected alleles for two models: 1) adaptation of a trait via independent beneficial mutations that are conditioned for fixation, that is, selective sweep model and 2) trait optimum model (polygenic adaptation), that is adaptation of a quantitative trait under stabilizing selection after a sudden shift in trait optimum. We identify several distinct patterns of selective sweep and trait optimum models in populations of different sizes. These features could provide the foundation for development of quantitative approaches to differentiate the two models.


Author(s):  
Juan-Vicente Bou ◽  
Rafael Sanjuán

Abstract Many animal viruses replicate and are released from cells in close association to membranes. However, whether this is a passive process or is controlled by the virus remains poorly understood. Importantly, the genetic basis and evolvability of membrane-associated viral shedding have not been investigated. To address this, we performed a directed evolution experiment using coxsackievirus B3, a model enterovirus, in which we repeatedly selected the free-virion or the fast-sedimenting membrane-associated viral subpopulations. The virus responded to this selection regime by reproducibly fixing a series of mutations that altered the extent of membrane-associated viral shedding, as revealed by full-genome ultra-deep sequencing. Specifically, using site-directed mutagenesis, we showed that substitution N63H in the viral capsid protein VP3 reduced the ratio of membrane-associated to free viral particles by 2 orders of magnitude. These findings open new avenues for understanding the mechanisms and implications of membrane-associated viral transmission.


2011 ◽  
Vol 279 (1727) ◽  
pp. 349-356 ◽  
Author(s):  
Morgan W. Kelly ◽  
Eric Sanford ◽  
Richard K. Grosberg

The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation.


2015 ◽  
Vol 9 (11) ◽  
pp. 2360-2372 ◽  
Author(s):  
Aifen Zhou ◽  
Kristina L Hillesland ◽  
Zhili He ◽  
Wendy Schackwitz ◽  
Qichao Tu ◽  
...  

2016 ◽  
Author(s):  
Thomas LaBar ◽  
Christoph Adami

AbstractMost mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines. Here, using mathematical modeling and digital experimental evolution, we show that small populations do evolve a reduced vulnerability to drift, or “drift robustness”. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not adaptive, but instead arises because small populations preferentially adapt to drift-robust fitness peaks. These results have implications for genome evolution in organisms with small population sizes.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Eleanor Bath ◽  
Danielle Edmunds ◽  
Jessica Norman ◽  
Charlotte Atkins ◽  
Lucy Harper ◽  
...  

Aggressive behaviours are among the most striking displayed by animals, and aggression strongly impacts fitness in many species. Aggression varies plastically in response to the social environment, but we lack direct tests of how aggression evolves in response to intra-sexual competition. We investigated how aggression in both sexes evolves in response to the competitive environment, using populations of Drosophila melanogaster that we experimentally evolved under female-biased, equal, and male-biased sex ratios. We found that after evolution in a female-biased environment—with less male competition for mates—males fought less often on food patches, although the total frequency and duration of aggressive behaviour did not change. In females, evolution in a female-biased environment—where female competition for resources is higher—resulted in more frequent aggressive interactions among mated females, along with a greater increase in post-mating aggression. These changes in female aggression could not be attributed solely to evolution either in females or in male stimulation of female aggression, suggesting that coevolved interactions between the sexes determine female post-mating aggression. We found evidence consistent with a positive genetic correlation for aggression between males and females, suggesting a shared genetic basis. This study demonstrates the experimental evolution of a behaviour strongly linked to fitness, and the potential for the social environment to shape the evolution of contest behaviours.


2018 ◽  
Author(s):  
Hernán E. Morales ◽  
Rui Faria ◽  
Kerstin Johannesson ◽  
Tomas Larsson ◽  
Marina Panova ◽  
...  

AbstractThe genetic basis of parallel ecological divergence provides important clues to the operation of natural selection and the predictability of evolution. Many examples exist where binary environmental contrasts seem to drive parallel divergence. However, this simplified view can conceal important components of parallel divergence because environmental variation is often more complex. Here, we disentangle the genetic basis of parallel divergence across two axes of environmental differentiation (crab-predation vs. wave-action and low-shore vs. high-shore habitat contrasts) in the marine snail Littorina saxatilis, a well established natural system of parallel ecological divergence. We used whole-genome resequencing across multiple instances of these two environmental axes, at local and regional scales from Spain to Sweden. Overall, sharing of genetic differentiation is generally low but it is highly heterogeneous across the genome and increases at smaller spatial scales. We identified genomic regions, both overlapping and non-overlapping with recently described candidate chromosomal inversions, that are differentially involved in adaptation to each of the environmental axis. Thus, the evolution of parallel divergence in L. saxatilis is largely determined by the joint action of geography, history, genomic architecture and congruence between environmental axes. We argue that the maintenance of standing variation, perhaps as balanced polymorphism, and/or the re-distribution of adaptive variants via gene flow can facilitate parallel divergence in multiple directions as an adaptive response to heterogeneous environments.


Sign in / Sign up

Export Citation Format

Share Document