scholarly journals Cannabinoid glycosides: In vitro production of a new class of cannabinoids with improved physicochemical properties

2017 ◽  
Author(s):  
Janee’ M. Hardman ◽  
Robert T. Brooke ◽  
Brandon J. Zipp

AbstractThe cannabinoid signaling system has recently garnered attention as a therapeutic target for numerous indications, and cannabinoids are now being pursued as new treatment options in diverse medical fields such as neurology, gastroenterology, pain management, and oncology. Cannabinoids are extremely hydrophobic and relatively unstable compounds, and as a result, formulation and delivery options are severely limited. Enzymatic glycosylation is a strategy to alter the physicochemical properties of small molecules, often improving their stability and aqueous solubility, as well as enabling site-specific drug targeting strategies. To determine if cannabinoids are a candidate for glycosylation, a library of glucosyltransferase (UGT) enzymes was screened for glycosylation activity towards various cannabinoids. The UGT76G1 enzyme from Stevia rebaudiana has been identified as having glucosyltransferase activity towards a broad range of cannabinoids. Compounds that were successfully glycosylated by UGT76G1 include the phytocannabinoids cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidivarin (CBDV), and cannabinol (CBN), and the human endocannabinoids anandamide (AEA), 2-arachidonoyl-glycerol (2AG), 1-arachidonoyl-glycerol (1AG), and synaptamide (DHEA). Interestingly, UGT76G1 is able to transfer primary, secondary, and tertiary glycosylations at each acceptor of most of the cannabinoids tested. Additionally, Os03g0702000p, a glycosyltransferase from Oryza sativa, was able to transfer secondary glucose residues onto cannabinoid monoglycosides previously established by UGT76G1. This new class of cannabinoid-glycosides has been termed cannabosides. The compounds have greatly improved solubility in aqueous solutions. This increased aqueous solubility may enable new oral pharmaceutical delivery options for cannabinoids, as well as targeted delivery and release of cannabinoids within the intestines through glycoside prodrug metabolism.

2014 ◽  
Vol 20 (2) ◽  
pp. 254-264 ◽  
Author(s):  
José Pérez ◽  
Caridad Díaz ◽  
Francisco Asensio ◽  
Alexandra Palafox ◽  
Olga Genilloud ◽  
...  

In the early stages of the drug discovery process, evaluation of the drug metabolism and physicochemical properties of new chemical entities is crucial to prioritize those candidates displaying a better profile for further development. In terms of metabolism, drug–drug interactions mediated through CYP450 inhibition are a significant safety concern, and therefore the effect of new candidate drugs on CYP450 activity should be screened early. In the initial stages of drug discovery, when physicochemical properties such as aqueous solubility have not been optimized yet, there might be a large number of candidate compounds showing artificially low CYP450 inhibition, and consequently potential drug–drug interaction toxicity might be overlooked. In this work, we present a novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition potential and kinetic aqueous solubility (NIVA-CYPI-KS). This new methodology is based on fluorogenic CYP450 activities and turbidimetric measurements for compound solubility, and it provides a significant improvement in the use of resources and a better understanding of CYP450 inhibition data.


2010 ◽  
Vol 22 (3) ◽  
pp. 216 ◽  
Author(s):  
M Anbazhagan ◽  
M Kalpana ◽  
R Rajendran ◽  
V Natarajan ◽  
D Dhanave

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1294
Author(s):  
Maria J. Faria ◽  
Carla M. Lopes ◽  
José das Neves ◽  
Marlene Lúcio

Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 417
Author(s):  
Xinning Wang ◽  
Aditi Shirke ◽  
Ethan Walker ◽  
Rongcan Sun ◽  
Gopolakrishnan Ramamurthy ◽  
...  

Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand–drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to anti-PSMA antibody-MMAE conjugate (PSMA-ADC) and MMAE, PSMA-1-VcMMAE had over a 10-fold improved maximum tolerated dose, resulting in improved therapeutic index. The small molecule–drug conjugates reported here can be easily synthesized and are more cost efficient than anti-body–drug conjugates. The therapeutic profile of the PSMA-1-VcMMAE encourages further clin-ical development for the treatment of advanced prostate cancer.


Author(s):  
Maria J. Faria ◽  
Carla M. Lopes ◽  
José das Neves ◽  
Marlene Lúcio

Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life and poor penetration into HIV reservoir sites, which contribute to the sub-optimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review focus on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARVs to overcome biological barriers upon administration. Furthermore, a correlation of these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference delivery for the treatment of HIV infections were also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Zhang ◽  
Tao Wang ◽  
Ashmita Saigal ◽  
Josephine Johnson ◽  
Jennifer Morrisson ◽  
...  

AbstractLung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab’s yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.


1964 ◽  
Vol 47 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Denis Gospodarowicz

ABSTRACT Incubation in vitro of rabbit follicles in separate experiments with dehydroepiandrosterone-14C (DHEA-14C), progesterone-14C and pregnenolone-3H in the presence of FSH gave the following results: 39 % of the radioactivity of DHEA-14C is converted to androstenedione and testosterone, while only 3 % of the radioactivity of either progesterone-14C or pregnenolone-3H is found in the androgen fraction. From the ratio of testosterone to androstenedione formed from the three precursors, the results are interpreted to mean that DHEA and pregnenolone, and not progesterone, are precursors of androgens in the follicle.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Sign in / Sign up

Export Citation Format

Share Document