scholarly journals Oropharyngeal mucosal transmission of Zika virus in rhesus macaques

2017 ◽  
Author(s):  
Christina M. Newman ◽  
Dawn M. Dudley ◽  
Matthew T. Aliota ◽  
Andrea M. Weiler ◽  
Gabrielle L. Barry ◽  
...  

AbstractZika virus (ZIKV) is present in urine, saliva, tears, and breast milk, but the transmission risk associated with these body fluids is currently unknown. We evaluated the risk of ZIKV transmission through mucosal contact in rhesus macaques. Application of high-dose ZIKV directly to the tonsils of 3 rhesus macaques resulted in detectable plasma viremia in all animals by 2 days post-exposure; virus replication kinetics were similar to those observed in animals infected subcutaneously. Three additional macaques inoculated subcutaneously with ZIKV served as saliva donors to assess the transmission risk from contact with oral secretions from an infected individual. Seven naive animals repeatedly exposed to donor saliva via the conjunctivae, tonsils, or nostrils did not become infected. Our results suggest that there is a risk of ZIKV transmission via the mucosal route, but that the risk posed by oral secretions from individuals with a typical course of ZIKV infection is low.

2019 ◽  
Author(s):  
Gage K. Moreno ◽  
Christina M. Newman ◽  
Michelle R. Koenig ◽  
Mariel S. Mohns ◽  
Andrea M. Weiler ◽  
...  

AbstractBy the end of the 2016 Zika virus (ZIKV) outbreak, it is estimated that there were up to 100 million infections in the Americas. In approximately one in seven infants born to mothers infected during pregnancy, ZIKV has been linked to microcephaly, developmental delays, or other congenital disorders collectively known as congenital Zika syndrome (CZS). Guillain-Barré syndrome (GBS) in ZIKV infected adults. It is a global health priority to develop a vaccine against ZIKV that elicits long-lasting immunity, however, the durability of immunity to ZIKV is unknown. Previous studies in mice and nonhuman primates have been crucial in vaccine development but have not defined the duration of immunity generated by ZIKV infection. In this study, we rechallenged five rhesus macaques with ZIKV two years after a primary ZIKV infection. We show that primary ZIKV infection generates high titers of neutralizing antibodies (nAbs) that protect from detectable plasma viremia following rechallenge and persist for at least 27 months. While additional longitudinal studies are necessary with longer time frames, this study establishes a new experimentally defined minimal length of protective ZIKV immunity.Author SummaryZIKV emerged as a vector-borne pathogen capable of causing illness in infected adults and congenital birth defects in infants born to mothers infected during pregnancy. Despite the drop in ZIKV cases since the 2015-16 epidemic, questions concerning the prevalence and longevity of protective immunity have left vulnerable communities fearful that they may become the center of next ZIKV outbreak. While pre-existing herd immunity in regions of past outbreaks may dampen the potential for future outbreaks to occur, we currently do not know the longevity of protective immunity to ZIKV after a person becomes infected. Here, we establish a new experimentally defined minimal length of protective ZIKV immunity. We show that five rhesus macaques initially infected with ZIKV two years prior to rechallenge elicit a durable immune response that protected from detectable plasma viremia. While this work establishes a new minimal length of protective immunity, additional studies are necessary to define the maximum length of protective immunity following ZIKV infection.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S55-S55 ◽  
Author(s):  
So-Yon Lim ◽  
Christa Osuna ◽  
Jessica Lakritz ◽  
Elsa Chen ◽  
Gyeol Yoon ◽  
...  

Abstract Background Zika virus (ZIKV) was first isolated from a sentinel rhesus monkey in 1947. ZIKV infection in humans is associated with serious neurological and reproductive complications. No antiviral or protective vaccine is yet available. Galidesivir an adenosine analog is a potent viral RNA-dependent RNA polymerase inhibitor with demonstrated broad-spectrum antiviral activity. Methods We have conducted four pre-clinical studies in rhesus macaques to assess the safety, antiviral efficacy and dosing strategies of galidesivir against ZIKV infection. Collectively, we have challenged 70 rhesus macaques by various routes using 1x105 TCID50of a Puerto Rican ZIKV isolate. We have evaluated galidesivir therapy administered via IM injection as early as 90 minutes and up to 72 hours after subcutaneous (SC) ZIKV challenge, and as late as 5 days after intravaginal (IVAG) challenge. In these studies, we evaluated the efficacy of a range of loading and maintence doses of galidesivir. The highest dose evaluated has been a loading dose of 100mg/kg BID followed by a maintenance dose of 25mg/kg BID for nine days. We followed multiple endpoints, including ZIKV RNA levels in plasma, urine, saliva, and cerebrospinal fluid. Immune activation, complete blood counts, chemistries and galidesivir pharmacokinetics were also monitored. Results Galidesivir was well-tolerated in all studies. All untreated controls developed high-level plasma viremia, and had readily detectable ZIKV RNA in CSF, saliva and urine post-infection. Animals treated in the first 24 hours after SC ZIKV challenge did not develop plasma viremia and were either negative or had significantly reduced ZIKV RNA in bodily fluids. Animals treated with galidesivir later (up to 72 hours) were partially protected; they had detectable plasma ZIKV RNA, but the onset was delayed and/or magnitude significantly reduced compared with controls. Animals infected IVAG were protected by galidesivir treatment up until day 5 after infection, with no blood viremia and significant reductions in ZIKV RNA in the CSF as compared with controls. Conclusion Galidesivir dosing in rhesus macaques was well-tolerated and offered significant protection against ZIKV infection. These results warrant continued study and clinical evaluation. Disclosures R. Taylor, BioCryst Pharmaceuticals: Employee, Salary; S. MacLennan, BioCryst: Employee, Salary; M. Leonard, BioCryst: Employee, Salary; E. Giuliano, BioCryst: Employee, Salary; A. Mathis, BioCryst Pharmaceuticals: Employee, Salary; E. Berger, BioCryst: Employee, Salary; Y. Babu, BioCryst: Employee, Salary; W. Sheridan, BioCryst Pharmaceuticals: Employee, Salary


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Gage K. Moreno ◽  
Christina M. Newman ◽  
Michelle R. Koenig ◽  
Mariel S. Mohns ◽  
Andrea M. Weiler ◽  
...  

ABSTRACT By the end of the 2016 Zika virus (ZIKV) outbreak, it is estimated that there were up to 100 million infections in the Americas. In approximately one in seven infants born to mothers infected during pregnancy, ZIKV has been linked to microcephaly, developmental delays, or other congenital disorders collectively known as congenital Zika syndrome, as well as Guillain-Barré syndrome, in ZIKV-infected adults. It is a global health priority to develop a vaccine against ZIKV that elicits long-lasting immunity; however, the durability of immunity to ZIKV is unknown. Previous studies in mice and nonhuman primates have been crucial in vaccine development but have not defined the duration of immunity generated by ZIKV infection. In this study, we rechallenged five rhesus macaques with ZIKV 22 to 28 months after a primary ZIKV infection. We show that primary ZIKV infection generates high titers of neutralizing antibodies that protect from detectable plasma viremia following rechallenge and persist for at least 22 to 28 months. While additional longitudinal studies are necessary with longer time frames, this study establishes a new experimentally defined minimal length of protective ZIKV immunity. IMPORTANCE ZIKV emerged as a vector-borne pathogen capable of causing illness in infected adults and congenital birth defects in infants born to mothers infected during pregnancy. Despite the decrease in ZIKV cases since the 2015-2016 epidemic, questions concerning the prevalence and longevity of protective immunity have left vulnerable communities fearful that they may become the center of next ZIKV outbreak. Although preexisting herd immunity in regions of past outbreaks may dampen the potential for future outbreaks to occur, we currently do not know the longevity of protective immunity to ZIKV after a person becomes infected. Here, we establish a new experimentally defined minimal length of protective ZIKV immunity. We show that five rhesus macaques initially infected with ZIKV 22 to 28 months prior to rechallenge elicit a durable immune response that protected from detectable plasma viremia. This study establishes a new minimal length of protective immunity.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1345
Author(s):  
Rosilainy Surubi Fernandes ◽  
Mariana Rocha David ◽  
Filipe Vieira Santos De Abreu ◽  
Anielly Ferreira-de-Brito ◽  
Noemi R. Gardinali ◽  
...  

Despite worldwide efforts to understand the transmission dynamics of Zika virus (ZIKV), scanty evaluation has been made on the vector competence of Aedes aegypti fed directly on viremic human and non-human primates (NHPs). We blood-fed Ae. aegypti from two districts in Rio de Janeiro on six ZIKV infected pregnant rhesus macaques at several time points, half of which were treated with Sofosbuvir (SOF). Mosquitoes were analyzed for vector competence after 3, 7 and 14 days of incubation. Although viremia extended up to eight days post monkey inoculation, only mosquitoes fed on the day of the peak of viremia, recorded on day two, became infected. The influence of SOF treatment could not be assessed because the drug was administered just after mosquito feeding on day two. The global infection, dissemination and transmission rates were quite low (4.09%, 1.91% and 0.54%, respectively); no mosquito was infected when viremia was below 1.26 × 105 RNA copies/mL. In conclusion, Ae. aegypti vector competence for ZIKV from macaques is low, likely to be due to low viral load and the short duration of ZIKV viremia in primates suitable for infecting susceptible mosquitoes. If ZIKV infection in human and macaques behaves similarly, transmission of the Zika virus in nature is most strongly affected by vector density.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Carol L. Vinton ◽  
Samuel J. Magaziner ◽  
Kimberly A. Dowd ◽  
Shelly J. Robertson ◽  
Emerito Amaro-Carambot ◽  
...  

ABSTRACT Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates. We measured ZIKV replication, cellular ZIKV RNA levels, and immune responses in non-SIV-infected and SIV-infected rhesus macaques (RMs), which we infected with ZIKV. Coinfected animals had a 1- to 2-day delay in peak ZIKV viremia, which was 30% of that in non-SIV-infected animals. However, ZIKV viremia was significantly prolonged in SIV-positive (SIV+) RMs. ISG levels at the time of ZIKV infection were predictive for lower ZIKV viremia in the SIV+ RMs, while prolonged ZIKV viremia was associated with muted and delayed adaptive responses in SIV+ RMs. IMPORTANCE Immunocompromised individuals often become symptomatic with infections which are normally fairly asymptomatic in healthy individuals. The particular mechanisms that underlie susceptibility to coinfections in human immunodeficiency virus (HIV)-infected individuals are multifaceted. ZIKV and other flaviviruses are sensitive to neutralizing antibodies, whose production can be limited in HIV-infected individuals but are also sensitive to type I interferons, which are expressed at high levels in HIV-infected individuals. Data in this study highlight how individual components of the innate and adaptive immune responses which become perturbed in HIV-infected individuals influence ZIKV infection.


2021 ◽  
Author(s):  
C. M. Crooks ◽  
A. M. Weiler ◽  
S. L. Rybarczyk ◽  
M. I. Bliss ◽  
A. S. Jaeger ◽  
...  

ABSTRACTConcerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis during pregnancy in a translational non-human primate model. Here we show that prior DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface tissues in macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term without adverse outcomes or gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant women worldwide is critical as vaccines against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue to circulate.


2019 ◽  
Author(s):  
Meghan E. Breitbach ◽  
Christina M. Newman ◽  
Dawn M. Dudley ◽  
Laurel M. Stewart ◽  
Matthew T. Aliota ◽  
...  

AbstractZika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection.Author summaryPre-existing immunity to one of the four DENV serotypes is known to increase the risk of severe disease upon secondary infection with a different serotype. Due to the antigenic similarities between ZIKV and DENV, it has been proposed that these viruses could interact in a similar fashion. Data from in vitro experiments and murine models suggests that pre-existing immunity to one virus could either enhance or protect against infection with the other. These somewhat contradictory findings highlight the need for immune competent animal models for understanding the role of cross-reactive antibodies in flavivirus pathogenesis. We examined secondary ZIKV or DENV infections in rhesus and cynomolgus macaques that had previously been infected with the other virus. We assessed the outcomes of secondary ZIKV or DENV infections by quantifying vRNA loads, clinical and laboratory parameters, body temperature, and weight for each cohort of animals and compared them with control animals. These comparisons demonstrated that within a year of primary infection, secondary infections with either ZIKV or DENV were similar to primary infections and were not associated with enhancement or reduction in severity of disease based on the outcomes that we assessed.


2020 ◽  
Vol 117 (14) ◽  
pp. 7981-7989 ◽  
Author(s):  
Koen K. A. Van Rompay ◽  
Lark L. Coffey ◽  
Tania Kapoor ◽  
Anna Gazumyan ◽  
Rebekah I. Keesler ◽  
...  

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Author(s):  
Blake Schouest ◽  
Tiffany A. Peterson ◽  
Dawn M. Szeltner ◽  
Elizabeth A. Scheef ◽  
Melody Baddoo ◽  
...  

AbstractAstrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.


2020 ◽  
Author(s):  
Koen K.A. Van Rompay ◽  
Lark L. Coffey ◽  
Tania Kapoor ◽  
Anna Gazumyan ◽  
Rebekah I. Keesler ◽  
...  

ABSTRACTHuman infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement in vitro (ADE) and extend their half-lives. Here we report on prophylactic co-administration of the Fc-modified antibodies to pregnant rhesus macaques challenged 3 times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.Significance statementZika virus (ZIKV) infection during pregnancy can cause fetal abnormalities. Vaccines against ZIKV are under development, but because of potential safety concerns due to disease enhancing antibodies, and the time required by active immunization to induce protective antibodies, there is a need to explore alternative strategies. Recombinant monoclonal antibodies can be modified to prevent enhancement of infection, and thus could be an efficacious and safe alternative to vaccines to confer rapid protection. We show that prophylactic administration of two engineered antibodies, Z004 and Z021, to pregnant macaques partially protects against fetal neurologic damage and limits vertical transmission of ZIKV.


Sign in / Sign up

Export Citation Format

Share Document