scholarly journals HistMapR: Rapid digitization of historical land-use maps in R

2017 ◽  
Author(s):  
Alistair G. Auffret ◽  
Adam Kimberley ◽  
Jan Plue ◽  
Helle Skånes ◽  
Simon Jakobsson ◽  
...  

Abstract1. Habitat destruction and degradation represent serious threats to biodiversity, and quantification of land-use change over time is important for understanding the consequences of these changes to organisms and ecosystem service provision.2. Comparing land use between maps from different time periods allows estimation of the magnitude of habitat change in an area. However, digitizing historical maps manually is time-consuming and analyses of change are usually carried out at small spatial extents or at low resolutions.3. We developed a method to semi-automatically digitize historical land-use maps using the R environment. We created a number of functions that use the existing raster package to classify land use according to a map’s colours, as defined by the RGB channels of the raster image. The method was tested on three different types of historical land-use map and results were compared to manual digitisations.4. Our method is fast, and agreement with manually-digitised maps of around 80-92% meets common targets for image classification. We hope that the ability to quickly classify large areas of historical land-use will promote the inclusion of land-use change into analyses of biodiversity, species distributions and ecosystem services.

2017 ◽  
Vol 8 (4) ◽  
pp. 189-197
Author(s):  
Christiane Cavalcante Leite ◽  
Marcos Heil Costa ◽  
Ranieri Carlos Ferreira de Amorim

The evaluation of the impacts of land-use change on the water resources has been, many times, limited by the knowledge of past land use conditions. Most publications on this field present only a vague description of the past land use, which is usually insufficient for more comprehensive studies. This study presents the first reconstruction of the historical land use patterns in Amazonia, that includes both croplands and pasturelands, for the period 1940-1995. During this period, Amazonia experienced the fastest rates of land use change in the world, growing 4-fold from 193,269 km2 in 1940 to 724,899 km2 in 1995. This reconstruction is based on a merging of satellite imagery and census data, and provides a 5'x5' yearly dataset of land use in three different categories (cropland, natural pastureland and planted pastureland) for Amazonia. This dataset will be an important step towards understanding the impacts of changes in land use on the water resources in Amazonia.


2021 ◽  
Author(s):  
Javier Rodrigo-Ilarri ◽  
Claudia P. Romero-Hernández ◽  
María-Elena Rodrigo-Clavero

<p>Land use in the nearby of a Municipal Solid Waste (MSW) landfill can be strongly affected by the waste management tasks (transport, landfilling and closure). Effects extend from the phases prior to the construction of the landfill until years after the completion of the landfilling process in areas located beyond the perimeter of the plot occupied by the landfill. In this work a new methodology for the analysis of land use change over time is presented. The methodology is based on the use of a new environmental index named WEI (Weighted Environmental Index). WEI is based on the use of GIS techniques accounting for different information sources (digital cartography, aerial photographs and satellite images). WEI assigns environmental values to land use based on the degree of anthropogenic intervention and its occupation surface. A georeferenced multitemporal statistical analysis is performed considering the values of WEI previously assigned to every land use. The methodology has been applied to analyze the land use change near the main MSW landfills of Valencia Region (Spain) where landfilling is currently the only waste disposal technique available. Data have been obtained from the Spanish Land Occupation Information System (SIOSE) public database and integrate GIS information about land use/land cover on an extensive, high-detailed scale. Results demonstrate the application of the WEI to real case studies and the importance of integrating statistical analysis of WEI evolution over time to arrive at a better understanding of the socio-economic and environmental processes that induce land-use change.</p>


Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1056-1074
Author(s):  
Bethany J. Blakely ◽  
Adrian V. Rocha ◽  
Jason S. McLachalan

AbstractAnthropogenic land use affects climate by altering the energy balance of the Earth’s surface. In temperate regions, cooling from increased albedo is a common result of historical land-use change. However, this albedo cooling effect is dependent mainly on the exposure of snow cover following forest canopy removal and may change over time due to simultaneous changes in both land cover and snow cover. In this paper, we combine modern remote sensing data and historical records, incorporating over 100 years of realized land use and climatic change into an empirical assessment of centennial-scale surface forcings in the Upper Midwestern USA. We show that, although increases in surface albedo cooled through strong negative shortwave forcings, those forcings were reduced over time by a combination of forest regrowth and snow-cover loss. Deforestation cooled strongly (− 5.3 Wm−2) and mainly in winter, while composition shift cooled less strongly (− 3.03 Wm−2) and mainly in summer. Combined, changes in albedo due to deforestation, shifts in species composition, and the return of historical forest cover resulted in − 2.81 Wm−2 of regional radiative cooling, 55% less than full deforestation. Forcings due to changing vegetation were further reduced by 0.32 Wm−2 of warming from a shortened snow-covered season and a thinning of seasonal snowpack. Our findings suggest that accounting for long-term changes in land cover and snow cover reduces the estimated cooling impact of deforestation, with implications for long-term land-use planning.


2020 ◽  
Vol 12 (24) ◽  
pp. 10234
Author(s):  
Javier Rodrigo-Ilarri ◽  
Claudia P. Romero ◽  
María-Elena Rodrigo-Clavero

For the first time, this paper introduces and describes a new Weighted Environmental Index (WEI) based on object-oriented models and GIS data. The index has been designed to integrate all the available information from extensive and detailed GIS databases. After the conceptual definition of the index has been justified, two applications for the regional and local scales of the WEI are shown. The applications analyze the evolution over time of the environmental value from land-use change for two different case studies in Spain: the Valencian Region and the L’Alcora municipality. Data have been obtained from the Spanish Land Occupation Information System (SIOSE) public database and integrate GIS information about land use/land cover on an extensive, high-detailed scale. Results demonstrate the application of the WEI to real case studies and the importance of integrating statistical analysis of WEI evolution over time to arrive at a better understanding of the socio-economic and environmental processes that induce land-use change.


2020 ◽  
Author(s):  
Gaëtane Le Provost ◽  
Isabelle Badenhausser ◽  
Cyrille Violle ◽  
Fabrice Requier ◽  
Marie D’Ottavio ◽  
...  

Abstract Context Global pollinator decline has motivated much research to understand the underlying mechanisms. Among the multiple pressures threatening pollinators, habitat loss has been suggested as a key-contributing factor. While habitat destruction is often associated with immediate negative impacts, pollinators can also exhibit delayed responses over time. Objectives We used a trait-based approach to investigate how past and current land use at both local and landscape levels impact plant and wild bee communities in grasslands through a functional lens. Methods We measured flower and bee morphological traits that mediate plant–bee trophic linkage in 66 grasslands. Using an extensive database of 20 years of land-use records, we tested the legacy effects of the landscape-level conversion of grassland to crop on flower and bee trait diversity. Results Land-use history was a strong driver of flower and bee trait diversity in grasslands. Particularly, bee trait diversity was lower in landscapes where much of the land was converted from grassland to crop long ago. Bee trait diversity was also strongly driven by plant trait diversity computed with flower traits. However, this relationship was not observed in landscapes with a long history of grassland-to-crop conversion. The effects of land-use history on bee communities were as strong as those of current land use, such as grassland or mass-flowering crop cover in the landscape. Conclusions Habitat loss that occurred long ago in agricultural landscapes alters the relationship between plants and bees over time. The retention of permanent grassland sanctuaries within intensive agricultural landscapes can offset bee decline.


2017 ◽  
Vol 4 (2) ◽  
pp. 109
Author(s):  
Kunihiko Yoshino ◽  
Yudi Setiawan ◽  
Eikichi Shima

In this study, time series datasets of MODIS EVI (Enhanced Vegetation Index) data from 2002 and 2011 in the Brantas River watershed located in eastern Java, Indonesia were analyzed and classified to make ten land use maps for each year, in order to support watershed land use planning which takes into account local land use and trends in land use change. These land use maps with eight types of main land use categories were examined. During the 10 years period, forested area has expanded, while upland, paddy rice field, mixed garden and plantation have decreased. One of the reasons for this land use change is ascribed to tree planting under the joint forest management system by local people and the state forest corporation.


2020 ◽  
Vol 12 (4) ◽  
pp. 628 ◽  
Author(s):  
Bhagawat Rimal ◽  
Sean Sloan ◽  
Hamidreza Keshtkar ◽  
Roshan Sharma ◽  
Sushila Rijal ◽  
...  

Globally, urbanization is increasing at an unprecedented rate at the cost of agricultural and forested lands in peri-urban areas fringing larger cities. Such land-cover change generally entails negative implications for societal and environmental sustainability, particularly in South Asia, where high demographic growth and poor land-use planning combine. Analyzing historical land-use change and predicting the future trends concerning urban expansion may support more effective land-use planning and sustainable outcomes. For Nepal’s Tarai region—a populous area experiencing land-use change due to urbanization and other factors—we draw on Landsat satellite imagery to analyze historical land-use change focusing on urban expansion during 1989–2016 and predict urban expansion by 2026 and 2036 using artificial neural network (ANN) and Markov chain (MC) spatial models based on historical trends. Urban cover quadrupled since 1989, expanding by 256 km2 (460%), largely as small scattered settlements. This expansion was almost entirely at the expense of agricultural conversion (249 km2). After 2016, urban expansion is predicted to increase linearly by a further 199 km2 by 2026 and by another 165 km2 by 2036, almost all at the expense of agricultural cover. Such unplanned loss of prime agricultural lands in Nepal’s fertile Tarai region is of serious concern for food-insecure countries like Nepal.


2017 ◽  
Vol 23 ◽  
pp. 174-208 ◽  
Author(s):  
Victor Blanco ◽  
Sascha Holzhauer ◽  
Calum Brown ◽  
Fredrik Lagergren ◽  
Gregor Vulturius ◽  
...  

2019 ◽  
Vol 54 (2) ◽  
pp. 255-272
Author(s):  
K. Sirikantisophon ◽  
W. Wanishsakpong ◽  
P. Chuangchang ◽  
O. Thinnukool

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14327 ◽  
Author(s):  
Erik Nelson ◽  
Heather Sander ◽  
Peter Hawthorne ◽  
Marc Conte ◽  
Driss Ennaanay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document