scholarly journals Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

2017 ◽  
Author(s):  
Lin Cong ◽  
Zeguan Wang ◽  
Yuming Chai ◽  
Wei Hang ◽  
Chunfeng Shang ◽  
...  

AbstractThe internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lin Cong ◽  
Zeguan Wang ◽  
Yuming Chai ◽  
Wei Hang ◽  
Chunfeng Shang ◽  
...  

The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.


2018 ◽  
Author(s):  
Geoffrey Migault ◽  
Thomas Panier ◽  
Raphaël Candelier ◽  
Georges Debrégeas ◽  
Volker Bormuth

AbstractDuring in vivo functional imaging, animals are head-fixed and thus deprived from vestibular inputs, which severely hampers the design of naturalistic virtual environments. To overcome this limitation, we developed a miniaturized ultra-stable light-sheet microscope that can be dynamically rotated during imaging along with a head-restrained zebrafish larva. We demonstrate that this system enables whole-brain functional imaging at single-cell resolution under controlled vestibular stimulation. We recorded for the first time the dynamic whole-brain response of a vertebrate to physiological vestibular stimulation. This development largely expands the potential of virtual-reality systems to explore complex multisensory-motor integration in 3D.


1982 ◽  
Vol 101 (1) ◽  
pp. 83-92 ◽  
Author(s):  
J. I. Prugh ◽  
C. B. Kimmel ◽  
W. K. Metcalfe

We describe the identification of Mauthner (M-) cell action potentials in an intact zebrafish larva, utilizing recording electrodes located outside the fish: 1. The externally recorded spike occurs at approximately the same time, and its waveform changes with recording site in the same way, as the extracellular M-spike recorded within the central nervous system. 2. The externally recorded M-spike may be readily distinguished from other forms of neural activity. 3. The M-spike can be identified in recordings from unrestrained larvae. This finding permits the direct study of M-cell function in the freely behaving animal.


2021 ◽  
Author(s):  
En Yang ◽  
Maarten F Zwart ◽  
Mikail Rubinov ◽  
Ben James ◽  
Ziqiang Wei ◽  
...  

To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.


Author(s):  
James Edward Niemeyer

Epilepsy is often labelled a network disorder, though a common view of seizures holds that they initiate in a singular onset zone before expanding contiguously outward. A recent report by Choy et al. (2021) leverages new tools to study whole-brain dynamics during epileptic seizures originating in the hippocampus. Cell-type-specific kindling and functional imaging revealed how various brain regions were recruited to seizures and uncovered a novel form of migrating seizure core.


2020 ◽  
Author(s):  
Lapo Turrini

Each one of us in his life has, at least once, smelled the scent of roses, read one canto of Dante’s Commedia or listened to the sound of the sea from a shell. All of this is possible thanks to the astonishing capabilities of an organ, such as the brain, that allows us to collect and organize perceptions coming from sensory organs and to produce behavioural responses accordingly. Studying an operating brain in a non-invasive way is extremely difficult in mammals, and particularly in humans. In the last decade, a small teleost fish, zebrafish (Danio rerio), has been making its way into the field of neurosciences. The brain of a larval zebrafish is made up of 'only' 100000 neurons and it’s completely transparent, making it possible to optically access it. Here, taking advantage of the best of currently available technology, we devised optical solutions to investigate the dynamics of neuronal activity throughout the entire brain of zebrafish larvae.


Sign in / Sign up

Export Citation Format

Share Document