scholarly journals Non-Parametric Genetic Prediction of Complex Traits with Latent Dirichlet Process Regression Models

2017 ◽  
Author(s):  
Ping Zeng ◽  
Xiang Zhou

AbstractUsing genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model (DPR). DPR is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare DPR with several commonly used prediction methods with simulations. We further apply DPR to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.

Author(s):  
Elisa Cappetta ◽  
Giuseppe Andolfo ◽  
Antonio Di Matteo ◽  
Amalia Barone ◽  
Luigi Frusciante ◽  
...  

Genomic selection (GS) is a predictive approach that was build up to increase the rate of genetic gain per unit of time in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effect. GS enables the prediction of breeding value of candidate genotypes for selection. In this work we address important issues related to GS and its implementation in tomato breeding context. Genomic constrains and critical parameters affecting the accuracy of prediction in such crop such as phenotyping, genotyping training population composition and size and statistical method should be carefully evaluated. Comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding program are also discussed. GS applied to tomato breeding has already shown to be feasible. We illustrated how GS can improve the rate of gain in elite lines selection, descendent and in backcross schemes. The GS schemes begin to be delineated and computer science can provide support for future selection strategies. A new breeding framework is beginning to emerge for optimizing tomato improvement procedures.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1236
Author(s):  
Elisa Cappetta ◽  
Giuseppe Andolfo ◽  
Antonio Di Matteo ◽  
Amalia Barone ◽  
Luigi Frusciante ◽  
...  

Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.


Author(s):  
Christian R. Werner ◽  
R. Chris Gaynor ◽  
Daniel J. Sargent ◽  
Alessandra Lillo ◽  
Gregor Gorjanc ◽  
...  

AbstractFor genomic selection in clonal breeding programs to be effective, crossing parents should be selected based on genomic predicted cross performance unless dominance is negligible. Genomic prediction of cross performance enables a balanced exploitation of the additive and dominance value simultaneously. Here, we compared different strategies for the implementation of genomic selection in clonal plant breeding programs. We used stochastic simulations to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included i) a breeding program that introduced genomic selection in the first clonal testing stage, and ii) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were i) selection of parents based on genomic estimated breeding values, and ii) selection of parents based on genomic predicted cross performance. Selection of parents based on genomic predicted cross performance produced faster genetic gain than selection of parents based on genomic estimated breeding values because it substantially reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using genomic prediction of cross performance always produced the most genetic gain unless dominance was negligible. We conclude that i) in clonal breeding programs with genomic selection, parents should be selected based on genomic predicted cross performance, and ii) a two-part breeding program with parent selection based on genomic predicted cross performance to rapidly drive population improvement has great potential to improve breeding clonally propagated crops.


2021 ◽  
Author(s):  
Yongjun Li ◽  
Sukhjiwan Kaur ◽  
Luke W. Pembleton ◽  
Hossein Valipour-Kahrood ◽  
Garry M. Rosewarne ◽  
...  

Abstract Using a stochastic computer simulation, we investigated the benefit of optimization strategies in the context of genomic selection (GS) for pulse breeding programs. We simulated GS for moderately complex to highly complex traits such as disease resistance, grain weight and grain yield in multiple environments with a high level of genotype-by-environment interaction for grain yield. GS led to higher genetic gain per unit of time and higher genetic diversity loss than phenotypic selection by shortening the breeding cycle time. The genetic gain obtained from selecting the segregating parents early in the breeding cycle (at F1 or F2 stages) was substantially higher than selecting at later stages even though prediction accuracy was moderate. Increasing the number of F1 intercross (F1i) families and keeping the total number of progeny of F1i families constant, we observed a decrease in genetic gain and increase in genetic diversity. Whereas increasing the number of progeny per F1i family while keeping a constant number of F1i families increased rate of genetic gain and had higher genetic diversity loss per unit of time. Adding 50 F2 family phenotypes to the training population increased the accuracy of GEBVs and genetic gain per year and decreased the rate of genetic diversity loss. Genetic diversity could be preserved by applying a strategy that restricted both the percentage of alleles fixed and the average relationship of the group of selected parents to preserve long-term genetic improvement in the pulse breeding program.


2018 ◽  
Author(s):  
Lorena G. Batista ◽  
R. Chris Gaynor ◽  
Gabriel R. A. Margarido ◽  
Tim Byrne ◽  
Peter Amer ◽  
...  

AbstractIn the context of genomic selection, we evaluated and compared recurrent selection breeding programs using either index selection or independent culling for selection of parents. We simulated a clonally propagated crop breeding program for 20 cycles of selection using either independent culling or an economic selection index with two unfavourably correlated traits under selection. Cycle time from crossing to selection of parents was kept the same for both strategies. Our results demonstrate that accurate knowledge of the economic importance of traits is essential even when performing independent culling. This is because independent culling achieved its optimum genetic gain when the culling threshold for each trait varied accordingly to the economic importance of the traits. When gains from independent culling were maximised, the efficiency of converting genetic diversity into genetic gain of both selection methods were equivalent. When the same proportion selected of 10% for each trait was used instead of optimal culling levels, index selection was 10%, 128% and 310% more efficient than independent culling when T2 had a relative economic importance of 1.0, 2.5 and 5.0, respectively. Given the complexity of estimating optimal culling levels and the fact that the gains achieved with independent culling are, at most, equivalent to index selection, the use of an economic selection index is recommended for multi-trait genomic selection.


2017 ◽  
Author(s):  
Marnin D. Wolfe ◽  
Dunia Pino Del Carpio ◽  
Olumide Alabi ◽  
Chiedozie Egesi ◽  
Lydia C. Ezenwaka ◽  
...  

ABSTRACTCassava (Manihot esculenta Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) reduces selection cycle times by the prediction of breeding value for selection of unevaluated lines based on genome-wide marker data. GS has been implemented at three breeding programs in sub-Saharan Africa. Initial studies provided promising estimates of predictive abilities in single populations using standard prediction models and scenarios. In the present study we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: (1) cross-validation within each population, (2) cross-population prediction and (3) cross-generation prediction. We also evaluated the impact of increasing training population size by phenotyping progenies selected either at random or using a genetic algorithm. Cross-validation results were mostly consistent across breeding programs, with non-additive models like RKHS predicting an average of 10% more accurately. Accuracy was generally associated with heritability. Cross-population prediction accuracy was generally low (mean 0.18 across traits and models) but prediction of cassava mosaic disease severity increased up to 57% in one Nigerian population, when combining data from another related population. Accuracy across-generation was poorer than within (cross-validation) as expected, but indicated that accuracy should be sufficient for rapid-cycling GS on several traits. Selection of prediction model made some difference across generations, but increasing training population (TP) size was more important. In some cases, using a genetic algorithm, selecting one third of progeny could achieve accuracy equivalent to phenotyping all progeny. Based on the datasets analyzed in this study, it was apparent that the size of a training population (TP) has a significant impact on prediction accuracy for most traits. We are still in the early stages of GS in this crop, but results are promising, at least for some traits. The TPs need to continue to grow and quality phenotyping is more critical than ever. General guidelines for successful GS are emerging. Phenotyping can be done on fewer individuals, cleverly selected, making for trials that are more focused on the quality of the data collected.Abbreviations(GS)Genomic selection(GBS)genotype-by-sequencing(IITA)International Institute of Tropical Agriculture(NRCRI)National Root Crops Research Institute(NaCRRI)National Crops Resources Research Institute(GEBVs)genomic estimated breeding values(TP)training population(RTWT)fresh root weight(RTNO)root number(SHTWT)fresh shoot weight(HI)harvest index(DM)dry matter(CMD)content cassava mosaic disease(MCMDS)mean CMD severity(VIGOR)early vigor


2016 ◽  
Vol 11 (3) ◽  
pp. 217
Author(s):  
Estu Nugroho ◽  
Budi Setyono ◽  
Mochammad Su’eb ◽  
Tri Heru Prihadi

Program pemuliaan ikan mas varietas Punten dilakukan dengan seleksi individu terhadap karakter bobot ikan. Pembentukan populasi dasar untuk kegiatan seleksi dilakukan dengan memijahkan secara massal induk ikan mas yang terdiri atas 20 induk betina dan 21 induk jantan yang dikoleksi dari daerah Punten, Kepanjen (delapan betina dan enam jantan), Kediri (tujuh betina dan 12 jantan), Sragen (27 betina dan 10 jantan), dan Blitar (15 betina dan 11 jantan). Larva umur 10 hari dipelihara selama empat bulan. Selanjutnya dilakukan penjarangan sebesar 50% dan benih dipelihara selama 14 bulan untuk dilakukan seleksi dengan panduan hasil sampling 250 ekor individu setiap populasi. Seleksi terhadap calon induk dilakukan saat umur 18 bulan pada populasi jantan dan betina secara terpisah dengan memilih berdasarkan 10% bobot ikan yang terbaik. Calon induk yang terseleksi kemudian dipelihara hingga matang gonad, kemudian dipilih sebanyak 150 pasang dan dipijahkan secara massal. Didapatkan respons positif dari hasil seleksi berdasarkan bobot ikan, yaitu 49,89 g atau 3,66% (populasi ikan jantan) dan 168,47 g atau 11,43% (populasi ikan betina). Nilai heritabilitas untuk bobot ikan adalah 0,238 (jantan) dan 0,505 (betina).Punten carp breeding programs were carried out by individual selection for body weight trait. The base population for selection activities were conducted by mass breeding of parent consisted of 20 female and 21 male collected from area Punten, eight female and six male (Kepanjen), seven female and 12 male (Kediri), 27 female and 10 male (Sragen), 15 female and 11 male (Blitar). Larvae 10 days old reared for four moths. Then after spacing out 50% of total harvest, the offspring reared for 14 months for selection activity based on the sampling of 250 individual each population. Selection of broodstock candidates performed since 18 months age on male and female populations separately by selecting based on 10% of fish with best body weight. Candidates selected broodstocks were then maintained until mature. In oder to produce the next generation 150 pairs were sets and held for mass spawning. The results revealed that selection response were positive, 49.89 g (3.66%) for male and 168.47 (11.43%) for female. Heritability for body weight is 0.238 (male) and 0.505 (female).


Author(s):  
Bruce Walsh ◽  
Michael Lynch

Quantitative traits—be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene—usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences. This extensive work of reference is suitable for graduate level students as well as professional researchers (both empiricists and theoreticians) in the fields of evolutionary biology, genetics, and genomics. It will also be of particular relevance and use to plant and animal breeders, human geneticists, and statisticians.


Sign in / Sign up

Export Citation Format

Share Document