Taking the short- or long-chain route: conversion efficiency of alpha linolenic acid to long-chain omega-3 fatty acids in aerial insectivore chicks

2017 ◽  
Author(s):  
Cornelia W. Twining ◽  
Peter Lawrence ◽  
David W. Winkler ◽  
Alexander S. Flecker ◽  
J. Thomas Brenna

AbstractFood availability and quality are both critical for growing young animals. In nature, swallows (Tachycineta bicolor) and other aerial insectivores feed on both aquatic insects, which are rich in omega-3 long-chain polyunsaturated fatty acid (LCPUFA) and terrestrial insects, which contain considerably less LCPUFA. Carnivorous mammals and fishes must obtain LCPUFA from diet, as they have lost the capacity to convert the precursor omega-3 ALA into LCPUFA. Thus, the relative value of aquatic versus terrestrial insects depends not only on the fatty acid composition of the prey, but also upon the capacity of consumers to convert ALA into LCPUFA. We used a combination of stable-isotope-labeled fatty acid tracers to ask if, and how efficiently, Tree Swallows can deposit newly synthesized LCPUFA into tissue. Our data show for the first time that Tree Swallows can convert ALA into LCPUFA deposited in liver and skeletal muscle. However, high Tree Swallow demand for LCPUFA combined with low ALA availability in natural terrestrial foods may strain their modest conversion ability. This suggests that while Tree Swallows can synthesize LCPUFA de novo, LCPUFA are ecologically essential nutrients in natural systems. Our findings thus provide mechanistic support for our previous findings and the importance of LCPUFA-rich aquatic insects for Tree Swallows and most likely other aerial insectivores with similar niches.Summary StatementA stable-isotope-labeled tracer reveals the mechanism for omega-3 long-chain polyunsaturated fatty acid (LCPUFA) limitation in a wild avian insectivore, showing that LCPUFA are an ecologically essential nutrient.

2016 ◽  
Vol 113 (39) ◽  
pp. 10920-10925 ◽  
Author(s):  
Cornelia W. Twining ◽  
J. Thomas Brenna ◽  
Peter Lawrence ◽  
J. Ryan Shipley ◽  
Troy N. Tollefson ◽  
...  

Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.


2018 ◽  
Vol 164 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Takuto Suito ◽  
Kohjiro Nagao ◽  
Masataka Hatano ◽  
Kenichi Kohashi ◽  
Aiko Tanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document