Songbird organotypic culture as an in vitro model for interrogating sparse sequencing networks

2017 ◽  
Author(s):  
Jun Shen ◽  
Todd A. Blute ◽  
William A. Liberti ◽  
William Yen ◽  
Derek C. Liberti ◽  
...  

ABSTRACTSparse sequences of neuronal activity are fundamental features of neural circuit computation; however, the underlying homeostatic mechanisms remain poorly understood. To approach these questions, we have developed a method for cellular-resolution imaging in organotypic cultures of the adult zebra finch brain, including portions of the intact song circuit. These in vitro networks can survive for weeks, and display mature neuron morphologies. Neurons within the organotypic slices exhibit a diversity of spontaneous and pharmacologically induced activity that can be easily monitored using the genetically encoded calcium indicator GCaMP6. In this study, we primarily focus on the classic song sequence generator HVC and the surrounding areas. We describe proof of concept experiments including physiological, optical, and pharmacological manipulation of these exposed networks. This method may allow the cellular rules underlying sparse, stereotyped neural sequencing to be examined with new degrees of experimental control.HighlightsOrganotypic brain slices from adult zebra finch (Taeniopygia guttata), expressing the calcium indicator GCaMP6, can be cultured and maintained for at least several weeks and display spontaneous and evoked calcium transients.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alyssa Maxwell ◽  
Iris Adam ◽  
Pernille S. Larsen ◽  
Peter G. Sørensen ◽  
Coen P. H. Elemans

AbstractVocal behavior can be dramatically changed by both neural circuit development and postnatal maturation of the body. During song learning in songbirds, both the song system and syringeal muscles are functionally changing, but it is unknown if maturation of sound generators within the syrinx contributes to vocal development. Here we densely sample the respiratory pressure control space of the zebra finch syrinx in vitro. We show that the syrinx produces sound very efficiently and that key acoustic parameters, minimal fundamental frequency, entropy and source level, do not change over development in both sexes. Thus, our data suggest that the observed acoustic changes in vocal development must be attributed to changes in the motor control pathway, from song system circuitry to muscle force, and not by material property changes in the avian analog of the vocal folds. We propose that in songbirds, muscle use and training driven by the sexually dimorphic song system are the crucial drivers that lead to sexual dimorphism of the syringeal skeleton and musculature. The size and properties of the instrument are thus not changing, while its player is.


2011 ◽  
Vol 35 (2) ◽  
pp. 188-196 ◽  
Author(s):  
R. Vargas ◽  
I. þ. Jóhannesdóttir ◽  
B. Sigurgeirsson ◽  
H. þorsteinsson ◽  
K. Æ. Karlsson

Recently, the zebrafish ( Danio rerio ) has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits. Information about the techniques used to obtain a workable preparation is not readily available. Here, we describe a complete protocol for obtaining in vitro and in vivo zebrafish brain preparations. In addition, we performed extracellular recordings in the whole brain, brain slices, and immobilized nonanesthetized larval zebrafish to evaluate the viability of the tissue. Each type of preparation can be used to detect spontaneous activity, to determine patterns of activity in specific brain areas with unknown functions, or to assess the functional roles of different neuronal groups during brain development in zebrafish. The technique described offers a guide that will provide innovative and broad opportunities to beginner students and researchers who are interested in the functional analysis of neuronal activity, plasticity, and neural development in the zebrafish brain.


2006 ◽  
Vol 24 (4) ◽  
pp. 285-291 ◽  
Author(s):  
Bárbara Tagliari ◽  
Lauren L. Zamin ◽  
Christianne G. Salbego ◽  
Carlos Alexandre Netto ◽  
Angela T.S. Wyse

2019 ◽  
Author(s):  
Yingjun Liu ◽  
Adriano Aguzzi

AbstractMicroglia play vital roles in the health and diseases of the central nervous system. Loss of microglia homeostatic state is a key feature of brain aging and neurodegeneration. However, the mechanisms underlying the maintenance of distinct microglia states are largely unclear. Here we show that NG2 glia, also known as oligodendrocyte precursor cells, are essential for maintaining the homeostatic microglia state. We developed a highly efficient and selective NG2 glia depletion method using small-molecule inhibitors of platelet-derived growth factor signaling in cultured brain slices. We found that loss of NG2 glia abolished the homeostatic microglia signature without affecting the disease-associated microglia profiles. Similar findings were also observed in vivo by genetically ablating NG2 glia in the adult mouse brain. These data suggest that NG2 glia exert a crucial influence onto microglia cellular states that are relevant to brain aging and neurodegenerative diseases. In addition, our results provide a powerful, convenient and selective tool for the investigation of NG2 glia function.Main pointsPostnatal NG2 glia maintenance obligatorily depends on continuous PDGF signaling.A highly efficient, selective and versatile NG2 glia depletion method is established.Loss of NG2 glia abolishes the homeostatic microglia signature both in vitro and in vivo.


Author(s):  
Ernesto Ciabatti ◽  
Ana González-Rueda ◽  
Daniel de Malmazet ◽  
Hassal Lee ◽  
Fabio Morgese ◽  
...  

AbstractTranssynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, represents the first tool for open-ended genetic manipulation of neural circuits. However, the high mutational rate of the rabies virus poses a risk that mutations targeting the key genetic regulatory element in the SiR genome could emerge and revert it to a canonical ΔG-Rabies. Such revertant mutations have recently been identified in a SiR batch. To address the origin, incidence and relevance of these mutations, we investigated the genomic stability of SiR in vitro and in vivo. We found that “revertant” mutations are rare and accumulate only when SiR is extensively amplified in vitro, particularly in suboptimal production cell lines that have insufficient levels of TEV protease activity. Moreover, we confirmed that SiR-CRE, unlike canonical ΔG-Rab-CRE or revertant-SiR-CRE, is non-toxic and that revertant mutations do not emerge in vivo during long-term experiments.HighlightsRevertant mutations are rare and do not accumulate when SiR is produced in high-TEVp expressing production cell linesSiR is non-toxic in vivoRevertant SiR mutations do not accumulate during in vivo experiments


2020 ◽  
Author(s):  
Alyssa Maxwell ◽  
Iris Adam ◽  
Pernille S. Larsen ◽  
Peter G. Sørensen ◽  
Coen P.H. Elemans

AbstractVocal behaviour can be dramatically changed by both neural circuit development and postnatal maturation of the body. During song learning in songbirds, both the song system and syringeal muscles are functionally changing, but it is unknown if maturation of sound generators within the syrinx contributes to vocal development. Here we densely sample the respiratory pressure control space of the zebra finch syrinx in vitro. We show that the syrinx produces sound very efficiently and that key acoustic parameters, minimal fundamental frequency, entropy and source level, do not change over development in both sexes. Thus, our data suggests that the observed acoustic changes in vocal development must be attributed to changes in the motor control pathway, from song system circuitry to muscle force, and not by material property changes in the avian analog of the vocal folds. We propose that in songbirds, muscle use and training driven by the sexually dimorphic song system are the crucial drivers that lead to sexual dimorphism of the syringeal skeleton and musculature. The size and properties of the instrument are thus not changing, while its player is.


2005 ◽  
Vol 145 (1-2) ◽  
pp. 205-212 ◽  
Author(s):  
David Fernández-López ◽  
José Martínez-Orgado ◽  
Ignacio Casanova ◽  
Bartolomé Bonet ◽  
Juan Carlos Leza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document