scholarly journals Dew-induced transpiration suppression impacts the water and isotope balances of Colocasia leaves

2017 ◽  
Author(s):  
Cynthia Gerlein-Safdi ◽  
Paul P.G. Gauthier ◽  
Kelly K. Caylor

AbstractFoliar uptake of water from the surface of leaves is common when rainfall is scarce and non-meteoric water such as dew or fog is more abundant. However, many species in more mesic environments have hydrophobic leaves that do not allow the plant to uptake water. Unlike foliar uptake, all species can benefit from dew- or fog-induced transpiration suppression, but despite its ubiquity, transpiration suppression has so far never been quantified. Here, we investigate the effect of dew-induced transpiration suppression on the water balance and the isotope composition of leaves via a series of experiments. Characteristically hydrophobic leaves of a tropical plant, Colocasia esculenta, are misted with isotopically enriched water to reproduce dew deposition. This species does not uptake water from the surface of its leaves. We measure leaf water isotopes and water potential and find that misted leaves exhibit a higher water potential (p < 0.05) and a more depleted water isotope composition than dry leaves (p < 0.001), suggesting a ~30% decrease in transpiration rate (p < 0.001) compared to control leaves. We propose three possible mechanisms governing the interaction of water droplets with leaf energy balance: increase in albedo from the presence of dew droplets, decrease in leaf temperature from the evaporation of dew, and local decrease in vapor pressure deficit. Comparing previous studies on foliar uptake to our results, we conclude that transpiration suppression has an effect of similar amplitude, yet opposite sign to foliar uptake on leaf water isotopes.

2020 ◽  
Author(s):  
Anne Alexandre ◽  
Clément Outrequin ◽  
Christine Vallet-Coulomb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
...  

&lt;p&gt;The oxygen isotope signature of leaf water is used to trace several processes at the soil-plant-atmosphere interface. During photosynthesis, it is transferred to the oxygen isotope signature of atmospheric CO&lt;sub&gt;2&lt;/sub&gt; and O&lt;sub&gt;2&lt;/sub&gt;, which can be used for reconstructing past changes in gross primary production. The oxygen isotope signature of leaf water additionally imprints leaf organic and mineral compounds, such as phytoliths, used as paleoclimate and paleovegetation proxies when extracted from sedimentary materials.&lt;/p&gt;&lt;p&gt;Numerous experimental and modelling studies were dedicated to constrain the main parameters responsible for changes in the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O of leaf water. Although these models usually correctly depict the main trends of &lt;sup&gt;18&lt;/sup&gt;O-enrichment of the leaf water when relative humidity decreases, the calculated absolute values often depart from the observed ones by several &amp;#8240;. Moreover, the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O of leaf water absorbed by plants is dependent on the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O value of meteoric and soil waters that can vary by several &amp;#8240; at different space and time scales. These added uncertainties make our knowledge of the parameters responsible for changes in the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O of leaf water and phytoliths flawed.&lt;/p&gt;&lt;p&gt;Changes in the triple oxygen isotope composition of leaf water, expressed by the &lt;sup&gt;17&lt;/sup&gt;O-excess, are controlled by fewer variables than changes in &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O. In meteoric water the &lt;sup&gt;17&lt;/sup&gt;O-excess varies slightly as it is weakly affected by temperature or phase changes during air mass transport. This makes the soil water fed by meteoric water and the atmospheric vapour in equilibrium with meteoric water changing little from a place to another. Hence the &lt;sup&gt;17&lt;/sup&gt;O-excess of leaf water is essentially controlled by the evaporative fractionation. The latest depends on the ratio of vapor pressure in the air to vapor pressure in the stomata intercellular space, close to relative humidity. Leaf water evaporative fractionation can lead to &lt;sup&gt;17&lt;/sup&gt;O-excess negative values that can exceed most of surficial water ones.&lt;/p&gt;&lt;p&gt;Here we present the outcomes of several recent growth chamber and field studies, for the purpose of i) refining the grass leaf water and phytoliths &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O and &lt;sup&gt;17&lt;/sup&gt;O-excess modelling, ii) assessing whether the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O and &lt;sup&gt;17&lt;/sup&gt;O-excess of grass leaf water can be reconstructed from phytoliths, and iii) examining the precision of the &lt;sup&gt;17&lt;/sup&gt;O-excess of phytoliths as a new proxy for past changes in continental atmospheric relative humidity. Atmospheric continental relative humidity is an important climate parameter poorly constrained in global climate models. A model-data comparison approach, applicable beyond the instrumental period, is essential to progress on this issue. However, there is currently a lack of proxies allowing quantitative reconstruction of past continental relative humidity. The &lt;sup&gt;17&lt;/sup&gt;O-excess signature of phytoliths could fill this gap.&lt;/p&gt;


1986 ◽  
Vol 78 (4) ◽  
pp. 749-751 ◽  
Author(s):  
S. K. Hicks ◽  
R. J. Lascano ◽  
C. W. Wendt ◽  
A. B. Onken

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 380-383 ◽  
Author(s):  
R. C. Johnson ◽  
H. T. Nguyen ◽  
R. W. McNew ◽  
D. M. Ferris

2021 ◽  
Vol 255 ◽  
pp. 112274
Author(s):  
S. Junttila ◽  
T. Hölttä ◽  
E. Puttonen ◽  
M. Katoh ◽  
M. Vastaranta ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Vegas Riffle ◽  
Nathaniel Palmer ◽  
L. Federico Casassa ◽  
Jean Catherine Dodson Peterson

Unlike most crop industries, there is a strongly held belief within the wine industry that increased vine age correlates with quality. Considering this perception could be explained by vine physiological differences, the purpose of this study was to evaluate the effect of vine age on phenology and gas exchange parameters. An interplanted, dry farmed, Zinfandel vineyard block under consistent management practices in the Central Coast of California was evaluated over two consecutive growing seasons. Treatments included Young vines (5 to 12 years old), Control (representative proportion of young to old vines in the block), and Old vines (40 to 60 years old). Phenology, leaf water potential, and gas exchange parameters were tracked. Results indicated a difference in phenological progression after berry set between Young and Old vines. Young vines progressed more slowly during berry formation and more rapidly during berry ripening, resulting in Young vines being harvested before Old vines due to variation in the timing of sugar accumulation. No differences in leaf water potential were found. Young vines had higher mid-day stomatal conductance and tended to have higher mid-day photosynthetic rates. The results of this study suggest vine age is a factor in phenological timing and growing season length.


2013 ◽  
Vol 40 (4) ◽  
pp. 409 ◽  
Author(s):  
Harald Hackl ◽  
Bodo Mistele ◽  
Yuncai Hu ◽  
Urs Schmidhalter

Spectral measurements allow fast nondestructive assessment of plant traits under controlled greenhouse and close-to-field conditions. Field crop stands differ from pot-grown plants, which may affect the ability to assess stress-related traits by nondestructive high-throughput measurements. This study analysed the potential to detect salt stress-related traits of spring wheat (Triticum aestivum L.) cultivars grown in pots or in a close-to-field container platform. In two experiments, selected spectral indices assessed by active and passive spectral sensing were related to the fresh weight of the aboveground biomass, the water content of the aboveground biomass, the leaf water potential and the relative leaf water content of two cultivars with different salt tolerance. The traits were better ascertained by spectral sensing of container-grown plants compared with pot-grown plants. This may be due to a decreased match between the sensors’ footprint and the plant area of the pot-grown plants, which was further characterised by enhanced senescence of lower leaves. The reflectance ratio R760 : R670, the normalised difference vegetation index and the reflectance ratio R780 : R550 spectral indices were the best indices and were significantly related to the fresh weight, the water content of the aboveground biomass and the water potential of the youngest fully developed leaf. Passive sensors delivered similar relationships to active sensors. Across all treatments, both cultivars were successfully differentiated using either destructively or nondestructively assessed parameters. Although spectral sensors provide fast and qualitatively good assessments of the traits of salt-stressed plants, further research is required to describe the potential and limitations of spectral sensing.


1994 ◽  
Vol 21 (3) ◽  
pp. 377 ◽  
Author(s):  
A Alvino ◽  
M Centritto ◽  
FD Lorenzi

Pepper (Capsicum annuum L.) plants were grown in 1 m2 lysimeters under two different water regimes in order to investigate differences in the spatial arrangements of the leaves and to relate this to daily assimilation rates of leaves of the canopy. The control regime (well-watered (W) treatment) was irrigated whenever the accumulated 'A' pan evaporation reached 4 cm, whereas the water-stressed (S) treatment was watered whenever the predawn leaf water potential fell below -1 MPa. During the growing cycle, equal numbers of sun and shade leaves were chosen from the apical, middle and basal parts of the canopy, corresponding to groups of leaves of increasing age. The CO2 exchange rate (CER) was measured at 0830, 1230 and 1530 hours on 8 days along the crop cycle, on leaves in their natural inclination and orientation. Leaf water potentials were measured on apical leaves before dawn and concurrently with gas exchange measurements. Control plants maintained predawn leaf water potential at -0.3 MPa, but S plants reached values lower than -1.2 MPa. Midday leaf water potentials were about twice as low in the S plants as in the controls. Water stress reduced LA1 during the period of crop growth, and dry matter production at harvest. Stressed apical leaves appeared to reduce stress by changing their inclination. They were paraheliotropic around midday and diaheliotropic at 0830 and 1530 hours. The CER values of the S treatment were significantly lower than those of the W treatment in apical and middle leaves, whereas the CER of basal leaves did not differ in either treatments. In the S treatment, reduction in the CER values of sunlit apical leaves was more evident in the afternoon than at midday or early in the morning, whereas basal leaves were less affected by water than basal stress leaves if sunlit, and negligibly in shaded conditions.


Sign in / Sign up

Export Citation Format

Share Document